We compute high-resolution electron energy loss spectra (HREELS) of possible structural motifs that form during the dynamic oxidation process on Si(100), including the important metastable precursor silanone and an adjacent-dimer bridge (ADB) structure that may seed oxide formation. Spectroscopic fingerprints of single site, silanone, and ‘‘seed’’ structures are identified and related to changes in the surface bandstructure of the clean surface. Incorporation of oxygen into the silicon lattice through adsorption and dissociation of water is also examined. Results are compared to available HREELS spectra and surface optical data, which are closely related. Our simulations confirm that HREELS offers complementary evidence to surface optical spectroscopy, and show that its high sensitivity allows it to distinguish between energetically and structurally similar oxidation models.

Simulation of the oxidation pathway on Si(100) using high-resolution EELS / C. Hogan, L. Caramella, G. Onida. - In: PHYSICA STATUS SOLIDI B-BASIC RESEARCH. - ISSN 0370-1972. - 249:6(2012), pp. 1132-1139.

Simulation of the oxidation pathway on Si(100) using high-resolution EELS

L. Caramella
Secondo
;
G. Onida
Ultimo
2012

Abstract

We compute high-resolution electron energy loss spectra (HREELS) of possible structural motifs that form during the dynamic oxidation process on Si(100), including the important metastable precursor silanone and an adjacent-dimer bridge (ADB) structure that may seed oxide formation. Spectroscopic fingerprints of single site, silanone, and ‘‘seed’’ structures are identified and related to changes in the surface bandstructure of the clean surface. Incorporation of oxygen into the silicon lattice through adsorption and dissociation of water is also examined. Results are compared to available HREELS spectra and surface optical data, which are closely related. Our simulations confirm that HREELS offers complementary evidence to surface optical spectroscopy, and show that its high sensitivity allows it to distinguish between energetically and structurally similar oxidation models.
HREELS; Oxidation; Si(100); Silanone; Theory
Settore FIS/03 - Fisica della Materia
2012
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/204249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact