For a class of linear partial differential operators of mixed elliptic-hyperbolic type with homogeneous Dirichlet data on the entire boundary of suitable planar domains, we exploit the recent spectral theory of [Lupo, Monticelli, Payne 2012] to establish a Fredholm alternative for weak solutions of the linear Dirichlet problem. This alternative is then used to study nonlinear Dirichlet problems with at most asymptotically linear nonlinearities, both in resonant and nonresonant cases. In particular, we obtain solvability results in nonresonant situations, a nonlinear Fredholm alternative (in the spirit of Landesman and Lazer) valid in both nonresonant and strongly resonant situations and establish a multiplicity result valid in nonresonant and weakly resonant situations.

Fredholm properties and nonlineare Dirichlet problems for mixed type operators / D. Lupo, D.D. Monticelli, K.R. Payne. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 397:2(2013 Jan), pp. 837-860. [10.1016/j.jmaa.2012.08.021]

Fredholm properties and nonlineare Dirichlet problems for mixed type operators

D.D. Monticelli
Secondo
;
K.R. Payne
Ultimo
2013-01

Abstract

For a class of linear partial differential operators of mixed elliptic-hyperbolic type with homogeneous Dirichlet data on the entire boundary of suitable planar domains, we exploit the recent spectral theory of [Lupo, Monticelli, Payne 2012] to establish a Fredholm alternative for weak solutions of the linear Dirichlet problem. This alternative is then used to study nonlinear Dirichlet problems with at most asymptotically linear nonlinearities, both in resonant and nonresonant cases. In particular, we obtain solvability results in nonresonant situations, a nonlinear Fredholm alternative (in the spirit of Landesman and Lazer) valid in both nonresonant and strongly resonant situations and establish a multiplicity result valid in nonresonant and weakly resonant situations.
Fredholm alternatives; jumping nonlinearities; mixed type PDE; nonlinear boundary value problems; resonance; spectral theory; topological methods; variational methods
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
LMP_YJMAA_16971.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 516.13 kB
Formato Adobe PDF
516.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0022247X12006646-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 367.98 kB
Formato Adobe PDF
367.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/204036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact