We investigated the effects of a chimeric protein (IL6RIL6 chimera) containing interleukin-6 (IL-6) fused to its soluble receptor (sIL-6R) on the proliferation and/or differentiation of rat oligodendrocyte progenitor cells (OPCs) and on oligodendrocyte survival. Exposure of OPCs to IL6RIL6 chimera for 48 h induced a dose-dependent decrease of bromodeoxyuridine (BrdU) incorporation. IL6RIL6 chimera treatment for 48 h also strongly increased the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2H-tetrazolium (MTS) by mitochondrial enzymes and enhanced oligodendrocyte staining with a mitochondrial fluorescent dye. A strong, dose-dependent increase in the number and length of processes immunostained for early (galactocerebroside) or late (myelin basic protein) oligodendrocyte differentiation markers was revealed after OPC treatment with IL6RIL6 chimera for 2-7 days, respectively. Moreover, treatment with IL6RIL6 chimera improved oligodendrocyte survival. The chimera-induced increase of oligodendrocyte arborization was mimicked, although with lower efficacy, by ciliary neurotrophic factor (CNTF) but not by IL-6 and was reduced in the presence of a gp130 soluble peptide which is able to inhibit the gp130-mediated signals of the IL-6/sIL-6R complex. Oligodendrocyte treatment with IL6RIL6 chimera for 30 min induced both signal transducer and the activator of transcription-1 (STAT-1) and STAT-3 phosphorylation and nuclear translocation. We conclude that, by interacting with membrane gp130 and possibly by activating Janus kinase/STAT pathways, IL6RIL6 chimera induces OPCs to differentiate into mature oligodendrocytes, promotes their survival, and could deserve investigation as a therapeutic strategy for enhancing remyelination.

Soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro differentiation of purified rat oligodendroglial lineage cells / A. Valerio, M. Ferrario, M. Dreano, G. Garotta, P. Spano, M. Pizzi. - In: MOLECULAR AND CELLULAR NEUROSCIENCES. - ISSN 1044-7431. - 21:4(2002), pp. 602-615.

Soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro differentiation of purified rat oligodendroglial lineage cells

A. Valerio;
2002

Abstract

We investigated the effects of a chimeric protein (IL6RIL6 chimera) containing interleukin-6 (IL-6) fused to its soluble receptor (sIL-6R) on the proliferation and/or differentiation of rat oligodendrocyte progenitor cells (OPCs) and on oligodendrocyte survival. Exposure of OPCs to IL6RIL6 chimera for 48 h induced a dose-dependent decrease of bromodeoxyuridine (BrdU) incorporation. IL6RIL6 chimera treatment for 48 h also strongly increased the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2H-tetrazolium (MTS) by mitochondrial enzymes and enhanced oligodendrocyte staining with a mitochondrial fluorescent dye. A strong, dose-dependent increase in the number and length of processes immunostained for early (galactocerebroside) or late (myelin basic protein) oligodendrocyte differentiation markers was revealed after OPC treatment with IL6RIL6 chimera for 2-7 days, respectively. Moreover, treatment with IL6RIL6 chimera improved oligodendrocyte survival. The chimera-induced increase of oligodendrocyte arborization was mimicked, although with lower efficacy, by ciliary neurotrophic factor (CNTF) but not by IL-6 and was reduced in the presence of a gp130 soluble peptide which is able to inhibit the gp130-mediated signals of the IL-6/sIL-6R complex. Oligodendrocyte treatment with IL6RIL6 chimera for 30 min induced both signal transducer and the activator of transcription-1 (STAT-1) and STAT-3 phosphorylation and nuclear translocation. We conclude that, by interacting with membrane gp130 and possibly by activating Janus kinase/STAT pathways, IL6RIL6 chimera induces OPCs to differentiate into mature oligodendrocytes, promotes their survival, and could deserve investigation as a therapeutic strategy for enhancing remyelination.
Settore BIO/14 - Farmacologia
2002
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/20370
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 64
social impact