Let L/poly and NL be the standard complexity classes, of languages recognizable in logarithmic space by Turing machines which are deterministic with polynomially-long advice and nondeterministic without advice, respectively. We recast the question whether L/poly \supseteq NL in terms of deterministic and nondeterministic two-way finite automata (2dfas and 2nfas). We prove it equivalent to the question whether every s-state unary 2nfa has an equivalent poly(s)-state 2dfa, or whether a poly(h)-state 2dfa can check accessibility in h-vertex graphs (even under unary encoding) or check two-way liveness in h-tall, h-column graphs. This complements two recent improvements of an old theorem of Berman and Lingas. On the way, we introduce new types of reductions between regular languages (even unary ones), use them to prove the completeness of specific languages for two-way nondeterministic polynomial size, and propose a purely combinatorial conjecture that implies L/poly \not\supseteq NL.
Two-way automata characterizations of L/poly versus NL / C.A. Kapoutsis, G. Pighizzini (LECTURE NOTES IN COMPUTER SCIENCE). - In: Computer science - theory and applications : 7th International computer science symposium in Russia, CSR 2012 : Nizhny Novgorod, Russia, july 3-7 2012 : proceedings / [a cura di] E.A. Hirsch, J. Karhumaki, A. Lepisto, M. Prilutskii. - New York : Springer, 2012. - ISBN 9783642306419. - pp. 217-228 (( Intervento presentato al 7. convegno Computer Science Symposium in Russia (CSR) tenutosi a Nizhny Novgorod nel 2012 [10.1007/978-3-642-30642-6_21].
Two-way automata characterizations of L/poly versus NL
G. PighizziniUltimo
2012
Abstract
Let L/poly and NL be the standard complexity classes, of languages recognizable in logarithmic space by Turing machines which are deterministic with polynomially-long advice and nondeterministic without advice, respectively. We recast the question whether L/poly \supseteq NL in terms of deterministic and nondeterministic two-way finite automata (2dfas and 2nfas). We prove it equivalent to the question whether every s-state unary 2nfa has an equivalent poly(s)-state 2dfa, or whether a poly(h)-state 2dfa can check accessibility in h-vertex graphs (even under unary encoding) or check two-way liveness in h-tall, h-column graphs. This complements two recent improvements of an old theorem of Berman and Lingas. On the way, we introduce new types of reductions between regular languages (even unary ones), use them to prove the completeness of specific languages for two-way nondeterministic polynomial size, and propose a purely combinatorial conjecture that implies L/poly \not\supseteq NL.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




