Single fibers from the tibialis muscle of Rana temporaria were subjected to ramp stretches during tetanic stimulation at a sarcomere length of approximately 2 microns. Immediately after the stretch, or after different time delays, the active fiber was released against a constant force equal to the isometric force (Po) exerted immediately before the stretch. Four phases were detected after release: an elastic recoil of the fiber's undamped elements, a transient rapid shortening, a marked reduction in the velocity of shortening (often to 0), and an apparently steady shortening (sometimes absent). Increasing the amplitude of the stretch from approximately 2 to 10% of the fiber rest length led to an increase in phase 2 shortening from approximately 5 to 10 nm per half-sarcomere. Phase 2 shortening increased further (up to 14 nm per half-sarcomere) if a time interval of 5-10 ms was left between the end of large ramp stretches and release to Po. After 50- to 100-ms time intervals, shortening occurred in two steps of approximately 5 nm per half-sarcomere each. These findings suggest that phase 2 is due to charging, during and after the stretch, of a damped element, which can then shorten against Po in at least two steps of approximately 5 nm/half sarcomere each.

Mechanical transients initiated by ramp stretch and release to Po in frog muscle fibers / G. Cavagna, M. Mazzanti, N.C. Heglund, G. Citterio. - In: AMERICAN JOURNAL OF PHYSIOLOGY. - ISSN 0002-9513. - 251:4 Pt 1(1986 Oct), pp. C571-C579.

Mechanical transients initiated by ramp stretch and release to Po in frog muscle fibers

G. Cavagna
Primo
;
M. Mazzanti
Secondo
;
1986

Abstract

Single fibers from the tibialis muscle of Rana temporaria were subjected to ramp stretches during tetanic stimulation at a sarcomere length of approximately 2 microns. Immediately after the stretch, or after different time delays, the active fiber was released against a constant force equal to the isometric force (Po) exerted immediately before the stretch. Four phases were detected after release: an elastic recoil of the fiber's undamped elements, a transient rapid shortening, a marked reduction in the velocity of shortening (often to 0), and an apparently steady shortening (sometimes absent). Increasing the amplitude of the stretch from approximately 2 to 10% of the fiber rest length led to an increase in phase 2 shortening from approximately 5 to 10 nm per half-sarcomere. Phase 2 shortening increased further (up to 14 nm per half-sarcomere) if a time interval of 5-10 ms was left between the end of large ramp stretches and release to Po. After 50- to 100-ms time intervals, shortening occurred in two steps of approximately 5 nm per half-sarcomere each. These findings suggest that phase 2 is due to charging, during and after the stretch, of a damped element, which can then shorten against Po in at least two steps of approximately 5 nm/half sarcomere each.
Animals ; Stress, Mechanical ; Muscles ; Muscle Contraction ; Electric Stimulation ; Time Factors ; Rana temporaria ; Isometric Contraction
Settore BIO/09 - Fisiologia
ott-1986
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/200955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact