The aim of this study was to validate, by capillary electrophoresis, the use of synthesized methyl malondialdehyde as the internal standard for the direct quantification of free and total (free+bound) malondialdehyde in biological samples. All analyses were performed in 20 cm x 50 microm uncoated capillaries at 20 degrees C, using 25 mmol/L borax (pH 9.3) and 5 mmol/L tetradecyltrimethylammonium bromide as running buffer. The applied voltage was -4kV (about 8 microA), the detector being set at 260 nm for a total run time of 8 min per sample. Free malondialdehyde was evaluated after acetonitrile extraction, while the samples evaluated for total malondialdehyde were, before extraction, hydrolyzed for 1h at 60 degrees C in the presence of 1 mol/L NaOH. The detection threshold was 0.2 micromol/L in microsomes and 0.4 micromol/L in plasma. As an application of the method, three pools of rat liver microsomes were quantified before (0.35+/-0.1 and 1.1+/-0.5 nmol/mg protein, free and total malondialdehyde, respectively, mean+/-SD) and after lipoperoxidation induction using systems able to generate oxygen free radicals (18.4+/-3.2 and 19.7+/-2.0 nmol/mg protein). The results were confirmed by isotopic dilution gas chromatography-mass spectrometry, used as the reference method. The feasibility of capillary electrophoresis for malondialdehyde determination in normal and pathological human plasma was also investigated.

Validation of methyl malondialdehyde as internal standard for malondialdehyde detection by capillary electrophoresis / R. Paroni, I. Fermo, G.M. Cighetti. - In: ANALYTICAL BIOCHEMISTRY. - ISSN 0003-2697. - 307:1(2002 Aug 01), pp. 92-98.

Validation of methyl malondialdehyde as internal standard for malondialdehyde detection by capillary electrophoresis

R. Paroni
Primo
;
G.M. Cighetti
Ultimo
2002

Abstract

The aim of this study was to validate, by capillary electrophoresis, the use of synthesized methyl malondialdehyde as the internal standard for the direct quantification of free and total (free+bound) malondialdehyde in biological samples. All analyses were performed in 20 cm x 50 microm uncoated capillaries at 20 degrees C, using 25 mmol/L borax (pH 9.3) and 5 mmol/L tetradecyltrimethylammonium bromide as running buffer. The applied voltage was -4kV (about 8 microA), the detector being set at 260 nm for a total run time of 8 min per sample. Free malondialdehyde was evaluated after acetonitrile extraction, while the samples evaluated for total malondialdehyde were, before extraction, hydrolyzed for 1h at 60 degrees C in the presence of 1 mol/L NaOH. The detection threshold was 0.2 micromol/L in microsomes and 0.4 micromol/L in plasma. As an application of the method, three pools of rat liver microsomes were quantified before (0.35+/-0.1 and 1.1+/-0.5 nmol/mg protein, free and total malondialdehyde, respectively, mean+/-SD) and after lipoperoxidation induction using systems able to generate oxygen free radicals (18.4+/-3.2 and 19.7+/-2.0 nmol/mg protein). The results were confirmed by isotopic dilution gas chromatography-mass spectrometry, used as the reference method. The feasibility of capillary electrophoresis for malondialdehyde determination in normal and pathological human plasma was also investigated.
Capillary electrophoresis ; Malondialdehyde ; Methyl malondialdehyde ; Microsomes ; Plasma
Settore BIO/10 - Biochimica
1-ago-2002
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/19872
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 18
social impact