Lactoferrin (LF) is a glycoprotein that exerts both bacteriostatic and bactericidal activities. The interaction of LF with lipopolysaccharide (LPS) of gram-negative bacteria seems to play a crucial role in the bactericidal effect. In this study, we evaluated, by means of an enzyme-linked immunosorbent assay, the binding of biotinylated LF to the S (smooth) and R (rough) (Ra, Rb, Rc, Rd1, Rd2, and Re) forms of LPS and different lipid A preparations. In addition, the effects of two monoclonal antibodies (AGM 10.14, an immunoglobulin G1 [IgG1] antibody, and AGM 2.29, an IgG2b antibody), directed against spatially distant epitopes of human LF, on the LF-lipid A or LF-LPS interaction were evaluated. The results showed that biotinylated LF specifically binds to solid-phase lipid A, as this interaction was prevented in a dose-dependent fashion by either soluble uncoupled LF or lipid A. The binding of LF to S-form LPS was markedly weaker than that to lipid A. Moreover, the rate of LF binding to R-form LPS was inversely related to core length. The results suggest that the polysaccharide O chain as well as oligosaccharide core structures may interfere with the LF- lipid A interaction. In addition, we found that soluble lipid A also inhibited LF binding to immobilized LPS, demonstrating that, in the whole LPS structure, the lipid A region contains the major determinant recognized by LF. AGM 10.14 inhibited LF binding to lipid A and LPS in a dose-dependent fashion, indicating that this monoclonal antibody recognizes an epitope involved in the binding of LF to lipid A or some epitope in its close vicinity. In contrast, AGM 2.29, even in a molar excess, did not prevent the binding of LF to lipid A or LPS. Therefore, AGM 10.14 may represent a useful tool for neutralizing selectively the binding of LF to lipid A. In addition, the use of such a monoclonal antibody could allow better elucidation of the consequences of the LF-lipid A interaction.

Lactoferrin-lipid A-lipopolysaccharide interaction: inhibition by anti-human lactoferrin monoclonal antibody AGM 10.14 / D. Caccavo, A. Afeltra, S. Pece, G. Giuliani, M. Freudenberg, C. Galanos, E. Jirillo. - In: INFECTION AND IMMUNITY. - ISSN 0019-9567. - 67:9(1999 Sep), pp. 4668-72-4672.

Lactoferrin-lipid A-lipopolysaccharide interaction: inhibition by anti-human lactoferrin monoclonal antibody AGM 10.14

S. Pece;
1999-09

Abstract

Lactoferrin (LF) is a glycoprotein that exerts both bacteriostatic and bactericidal activities. The interaction of LF with lipopolysaccharide (LPS) of gram-negative bacteria seems to play a crucial role in the bactericidal effect. In this study, we evaluated, by means of an enzyme-linked immunosorbent assay, the binding of biotinylated LF to the S (smooth) and R (rough) (Ra, Rb, Rc, Rd1, Rd2, and Re) forms of LPS and different lipid A preparations. In addition, the effects of two monoclonal antibodies (AGM 10.14, an immunoglobulin G1 [IgG1] antibody, and AGM 2.29, an IgG2b antibody), directed against spatially distant epitopes of human LF, on the LF-lipid A or LF-LPS interaction were evaluated. The results showed that biotinylated LF specifically binds to solid-phase lipid A, as this interaction was prevented in a dose-dependent fashion by either soluble uncoupled LF or lipid A. The binding of LF to S-form LPS was markedly weaker than that to lipid A. Moreover, the rate of LF binding to R-form LPS was inversely related to core length. The results suggest that the polysaccharide O chain as well as oligosaccharide core structures may interfere with the LF- lipid A interaction. In addition, we found that soluble lipid A also inhibited LF binding to immobilized LPS, demonstrating that, in the whole LPS structure, the lipid A region contains the major determinant recognized by LF. AGM 10.14 inhibited LF binding to lipid A and LPS in a dose-dependent fashion, indicating that this monoclonal antibody recognizes an epitope involved in the binding of LF to lipid A or some epitope in its close vicinity. In contrast, AGM 2.29, even in a molar excess, did not prevent the binding of LF to lipid A or LPS. Therefore, AGM 10.14 may represent a useful tool for neutralizing selectively the binding of LF to lipid A. In addition, the use of such a monoclonal antibody could allow better elucidation of the consequences of the LF-lipid A interaction.
Antibodies, Monoclonal; Animals; Lactoferrin; Tumor Cells, Cultured; Humans; Lipopolysaccharides; Mice; Lipid A
Settore MED/04 - Patologia Generale
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/196807
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact