The large granular lymphocyte (LGL) population, which effects a natural killer (NK) function, consists of cells whose lineage derivation has not been clearly established on the basis of phenotypic and functional properties. To clarify the relationship of LGL/NK cells to T cells we studied patterns of rearrangement and expression of the T cell receptor (Ti) genes alpha, beta, and gamma in normal human LGLs; in CD8+, CD8-, Mol+, and Mol- LGL subsets; and in 17 cases of leukemic LGL proliferations (T gamma LPD). T alpha, T beta, and T gamma genes were not expressed, nor were T beta and T gamma genes rearranged in normal LGLs or LGL subsets. The T gamma LPD were divided into two groups. One group (15/17 cases) was characterized as CD3+ and displayed Ti gene rearrangements. Seven of these cases were reactive with monoclonal antibody WT31, which suggested expression of an alpha/beta heterodimer on the cell surface. The other group (2/17 cases) was CD3- with unrearranged Ti genes. These results indicate that the normal LGL/NK population is homogeneous and distinct from the normal T cell population because it does not express, and as a result, cannot effect its immune function through the T cell receptor molecules. Conversely, T gamma LPDs represent a heterogeneous group of lymphoproliferative diseases within which the CD3-, Ti- cases most likely represent the neoplastic counterpart of normal LGL cells. The more frequent CD3+ cases may be related to recently described NK-like T cells. The observations that normal LGLs maintain germline T gamma genes and that many CD3+ T gamma LPD display an alpha/beta heterodimer suggest that a T gamma-containing receptor may not be necessary for NK or NK-like cytotoxicity.

T cell receptor (alpha, beta, gamma) gene rearrangements and expression in normal and leukemic large granular lymphocytes/natural killer cells / P. G. Pelicci, P. Allavena, M. Subar, A. Rambaldi, A. Pirelli, M. Di Bello, T. Barbui, D. M. Knowles, R. Dalla-Favera, A. Mantovani. - In: BLOOD. - ISSN 0006-4971. - 70:5(1987 Nov), pp. 1500-8-1508.

T cell receptor (alpha, beta, gamma) gene rearrangements and expression in normal and leukemic large granular lymphocytes/natural killer cells

P. G. Pelicci;A. Rambaldi;
1987

Abstract

The large granular lymphocyte (LGL) population, which effects a natural killer (NK) function, consists of cells whose lineage derivation has not been clearly established on the basis of phenotypic and functional properties. To clarify the relationship of LGL/NK cells to T cells we studied patterns of rearrangement and expression of the T cell receptor (Ti) genes alpha, beta, and gamma in normal human LGLs; in CD8+, CD8-, Mol+, and Mol- LGL subsets; and in 17 cases of leukemic LGL proliferations (T gamma LPD). T alpha, T beta, and T gamma genes were not expressed, nor were T beta and T gamma genes rearranged in normal LGLs or LGL subsets. The T gamma LPD were divided into two groups. One group (15/17 cases) was characterized as CD3+ and displayed Ti gene rearrangements. Seven of these cases were reactive with monoclonal antibody WT31, which suggested expression of an alpha/beta heterodimer on the cell surface. The other group (2/17 cases) was CD3- with unrearranged Ti genes. These results indicate that the normal LGL/NK population is homogeneous and distinct from the normal T cell population because it does not express, and as a result, cannot effect its immune function through the T cell receptor molecules. Conversely, T gamma LPDs represent a heterogeneous group of lymphoproliferative diseases within which the CD3-, Ti- cases most likely represent the neoplastic counterpart of normal LGL cells. The more frequent CD3+ cases may be related to recently described NK-like T cells. The observations that normal LGLs maintain germline T gamma genes and that many CD3+ T gamma LPD display an alpha/beta heterodimer suggest that a T gamma-containing receptor may not be necessary for NK or NK-like cytotoxicity.
Antigens, Surface; Reference Values; Humans; Transcription, Genetic; Lymphocytes; Nucleic Acid Hybridization; Leukemia; Genes; DNA Restriction Enzymes; Killer Cells, Natural; DNA; Receptors, Antigen, T-Cell; Epitopes
Settore MED/04 - Patologia Generale
nov-1987
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/196400
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 62
  • ???jsp.display-item.citation.isi??? ND
social impact