Starting from a pool of 10(13) RNA sequences, we isolated a number of TAR RNA variants after nine rounds of selection by binding to recombinant Tat in vitro (SELEX procedure). Sequence analysis of part of the selected molecular species indicated that two TAR variants (clones A and B) were, respectively, represented five and four times. These two groups of sequences constituted approximately 25% of the total number of analyzed clones (9/34). As far as the primary and presumptive secondary structures of the wild-type TAR are concerned, the selected A and B variants showed an almost complete sequence conservation of the Tat-binding domain, but the configuration of this nucleotide region differed within the secondary structure. Despite this difference, as verified by gel retardation and filter binding assays, both the A and B variants bound Tat in vitro with an affinity that was very close to that of the wild-type TAR. Conversely, neither variant sustained Tat-mediated trans-activation in vivo when they replaced the wild-type TAR inside the long terminal repeat of HIV_1. Taken together, our results suggest that these TAR variants have lost the ability to bind cell factor(s) in vivo and may therefore represent useful decoys for the inhibition of HIV-1 replication.

In vitro selection of HIV-1 TAR variants by the Tat protein / A. Marozzi, R. Meneveri, M. Giacca, M. I. Gutierrez, A. G. Siccardi, E. Ginelli. - In: JOURNAL OF BIOTECHNOLOGY. - ISSN 0168-1656. - 61:2(1998 Apr 15), pp. 117-128. [10.1016/S0168-1656(98)00017-0]

In vitro selection of HIV-1 TAR variants by the Tat protein

A. Marozzi
Primo
;
E. Ginelli
Ultimo
1998

Abstract

Starting from a pool of 10(13) RNA sequences, we isolated a number of TAR RNA variants after nine rounds of selection by binding to recombinant Tat in vitro (SELEX procedure). Sequence analysis of part of the selected molecular species indicated that two TAR variants (clones A and B) were, respectively, represented five and four times. These two groups of sequences constituted approximately 25% of the total number of analyzed clones (9/34). As far as the primary and presumptive secondary structures of the wild-type TAR are concerned, the selected A and B variants showed an almost complete sequence conservation of the Tat-binding domain, but the configuration of this nucleotide region differed within the secondary structure. Despite this difference, as verified by gel retardation and filter binding assays, both the A and B variants bound Tat in vitro with an affinity that was very close to that of the wild-type TAR. Conversely, neither variant sustained Tat-mediated trans-activation in vivo when they replaced the wild-type TAR inside the long terminal repeat of HIV_1. Taken together, our results suggest that these TAR variants have lost the ability to bind cell factor(s) in vivo and may therefore represent useful decoys for the inhibition of HIV-1 replication.
Gene therapy; HIV-1; SELEX; TAR; Tat
Settore BIO/13 - Biologia Applicata
15-apr-1998
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/196393
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact