For an isolated macrosystem classical state parameters zeta (t) are introduced inside a quantum mechanical treatment. By a suitable mathematical representation of the actual preparation procedure in the time interval [T,t(0)] a statistical operator is constructed as a solution of the Liouville-von Neumann equation, exhibiting at time t the state parameters zeta (t'), t(0) less than or equal to t' less than or equal to t, and preparation parameters related to times T less than or equal to t' less than or equal to t(0). Relation with Zubarev's nonequilibrium statistical operator is discussed. A mechanism for memory loss is investigated and time evolution by a semigroup is obtained for a restricted set of relevant observables, slowly varying on a suitable time scale.

Description of isolated macroscopic systems inside quantum mechanics / L. Lanz, O. Melsheimer, B. Vacchini. - In: REPORTS ON MATHEMATICAL PHYSICS. - ISSN 0034-4877. - 46:1-2(2000), pp. 191-202.

Description of isolated macroscopic systems inside quantum mechanics

L. Lanz
Primo
;
B. Vacchini
Ultimo
2000

Abstract

For an isolated macrosystem classical state parameters zeta (t) are introduced inside a quantum mechanical treatment. By a suitable mathematical representation of the actual preparation procedure in the time interval [T,t(0)] a statistical operator is constructed as a solution of the Liouville-von Neumann equation, exhibiting at time t the state parameters zeta (t'), t(0) less than or equal to t' less than or equal to t, and preparation parameters related to times T less than or equal to t' less than or equal to t(0). Relation with Zubarev's nonequilibrium statistical operator is discussed. A mechanism for memory loss is investigated and time evolution by a semigroup is obtained for a restricted set of relevant observables, slowly varying on a suitable time scale.
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0034487701800239-main.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 905.83 kB
Formato Adobe PDF
905.83 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/194242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact