We show that the independence relation defining a trace monoid M admits a transitive orientation if and only if the characteristic series ξ of a lexicographic cross section of M is the inverse of the determinant of (Id-X), where X is a matrix representing the minimum finite automaton recognizing ξ and Id is the identity matrix. This implies that, if the independence relation of a trace monoid M admits a transitive orientation, then any unambiguous lifting of the Möbius function of M is the determinant of a matrix defined by the smallest acceptor of the corresponding cross section.
Determinants and Moebius functions in trace monoids / C. Choffrut, M. Goldwurm. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 194:1-3(1999), pp. 239-247.
Titolo: | Determinants and Moebius functions in trace monoids |
Autori: | GOLDWURM, MASSIMILIANO (Ultimo) |
Settore Scientifico Disciplinare: | Settore INF/01 - Informatica |
Data di pubblicazione: | 1999 |
Rivista: | |
Tipologia: | Article (author) |
Appare nelle tipologie: | 01 - Articolo su periodico |