1. The self-adapting effects of chemical backgrounds on the response of primary chemoreceptor cells to superimposed stimuli were studied using lobster (Homarus americanus) NH4 receptor cells. 2. These receptors responded for several seconds to the onset of the backgrounds, and then returned to their initial level of spontaneous activity (usually zero). The strongest response always occurred only during the steepest concentration change; the response then decayed back to zero or to the earlier spontaneous firing level, while the background concentration was still rising, and remained silent during the entire time that the background was maintained constant (20-30 min) (Fig. 2). 3. Exposure to constant self-adapting backgrounds eliminated the responses of NH4 receptor cells to stimuli of concentration lower than the background, and reduced the responses to all higher stimulus concentrations tested by a nearly equal amount. This resulted in a parallel shift of the stimulus-response function to the right along the abscissa (Figs. 3 and 4). 4. Since the response threshold was completely re-set by adaptation to backgrounds, NH4 receptors seem to function mostly as detectors of relative rather than absolute stimulus intensity across their entire dynamic range: the response to a given stimulus-to-background ratio remained the same over 3 log step increases of background concentration (Fig. 6). 5. As in other sensory modalities, a parallel shift of response functions appears to be an important property of chemoreceptor cells, allowing for this sensory system to function over a wider stimulus intensity range than the instantaneous dynamic range of individual receptor cells.

Adaptation in chemoreception cells I: Self-adapting backgrounds determine threshold and cause parallel shift of response function. / P. Borroni, J. Atema. - In: JOURNAL OF COMPARATIVE PHYSIOLOGY. A, NEUROETHOLOGY, SENSORY, NEURAL, AND BEHAVIORAL PHYSIOLOGY. - ISSN 0340-7594. - 164:1(1988), pp. 67-74.

Adaptation in chemoreception cells I: Self-adapting backgrounds determine threshold and cause parallel shift of response function.

P. Borroni
Primo
;
1988

Abstract

1. The self-adapting effects of chemical backgrounds on the response of primary chemoreceptor cells to superimposed stimuli were studied using lobster (Homarus americanus) NH4 receptor cells. 2. These receptors responded for several seconds to the onset of the backgrounds, and then returned to their initial level of spontaneous activity (usually zero). The strongest response always occurred only during the steepest concentration change; the response then decayed back to zero or to the earlier spontaneous firing level, while the background concentration was still rising, and remained silent during the entire time that the background was maintained constant (20-30 min) (Fig. 2). 3. Exposure to constant self-adapting backgrounds eliminated the responses of NH4 receptor cells to stimuli of concentration lower than the background, and reduced the responses to all higher stimulus concentrations tested by a nearly equal amount. This resulted in a parallel shift of the stimulus-response function to the right along the abscissa (Figs. 3 and 4). 4. Since the response threshold was completely re-set by adaptation to backgrounds, NH4 receptors seem to function mostly as detectors of relative rather than absolute stimulus intensity across their entire dynamic range: the response to a given stimulus-to-background ratio remained the same over 3 log step increases of background concentration (Fig. 6). 5. As in other sensory modalities, a parallel shift of response functions appears to be an important property of chemoreceptor cells, allowing for this sensory system to function over a wider stimulus intensity range than the instantaneous dynamic range of individual receptor cells.
Settore BIO/09 - Fisiologia
1988
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/190590
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 59
social impact