The effect of systemic administration on drug uptake at cellular level was evaluated using time-gated fluorescence spectroscopy performed on a murine ascitic tumour model. Mice bearing L1210 leukaemia were injected intraperitoneally or intravenously with 25 mg per kg body weight hematoporphyrin derivative (HpD), 12.5 mg per kg body weight photofrin II (PII), 25 or 5 mg per kg body weight disulphonated aluminium phthalocyanine (AlS2Pc). Every 2 h and for up to 22 or 30 h, mice were sacrificed, leukaemic cells extracted from the peritoneum, washed, and resuspended in buffer for fluorescence measurements. HpD and PII emission spectra were almost identical 12 h after intraperitoneal injection with main peaks at 630 nm and no appreciable changes afterwards. In the first 12 h, the PII fluorescence spectrum was constant, while in the case of HpD a shoulder at 615 nm was detectable. Similar fluorescence behaviour was observed after intravenous administration of porphyrin derivatives. These results seem to confirm that the tumour localizing fraction is the part actually retained by the cells. The AlS2Pc spectrum peaked at 685 nm and did not change in any of our experiments. AlS2Pc is incorporated more rapidly with respect to porphyrins, as was clearly observed in the case of intravenous administration, where the AlS2Pc fluorescence was readily detectable after 2 h, whereas the PII emission became apparent only after 4-6 h.

Time-gated fluorescence spectroscopy of porphyrin derivatives and aluminium phthalocyanine incorporated in vivo in a murine ascitic tumour model / R. Cubeddu, R. Ramponi, P. Taroni, G. Canti. - In: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY. - ISSN 1011-1344. - 11:3-4(1991 Dec), pp. 319-328.

Time-gated fluorescence spectroscopy of porphyrin derivatives and aluminium phthalocyanine incorporated in vivo in a murine ascitic tumour model

G. Canti
Ultimo
1991-12

Abstract

The effect of systemic administration on drug uptake at cellular level was evaluated using time-gated fluorescence spectroscopy performed on a murine ascitic tumour model. Mice bearing L1210 leukaemia were injected intraperitoneally or intravenously with 25 mg per kg body weight hematoporphyrin derivative (HpD), 12.5 mg per kg body weight photofrin II (PII), 25 or 5 mg per kg body weight disulphonated aluminium phthalocyanine (AlS2Pc). Every 2 h and for up to 22 or 30 h, mice were sacrificed, leukaemic cells extracted from the peritoneum, washed, and resuspended in buffer for fluorescence measurements. HpD and PII emission spectra were almost identical 12 h after intraperitoneal injection with main peaks at 630 nm and no appreciable changes afterwards. In the first 12 h, the PII fluorescence spectrum was constant, while in the case of HpD a shoulder at 615 nm was detectable. Similar fluorescence behaviour was observed after intravenous administration of porphyrin derivatives. These results seem to confirm that the tumour localizing fraction is the part actually retained by the cells. The AlS2Pc spectrum peaked at 685 nm and did not change in any of our experiments. AlS2Pc is incorporated more rapidly with respect to porphyrins, as was clearly observed in the case of intravenous administration, where the AlS2Pc fluorescence was readily detectable after 2 h, whereas the PII emission became apparent only after 4-6 h.
Injections, Intraperitoneal; Animals; Porphyrins; Leukemia, Lymphoid; Injections, Intravenous; Spectrometry, Fluorescence; Organometallic Compounds; Mice; Indoles; Leukemia, Experimental; Ascites; Aluminum; Male
Settore BIO/14 - Farmacologia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/190041
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact