Diabetes is often accompanied by several long-term complications such as neuropathy, nephropathy, retinopathy, cataract and angiopathy; their occurrence has been linked to the modification of the physiological levels of glycaemia. Several interrelated metabolic pathways have been implicated in the toxic effects of glucose; the polyol pathways was one of the first considered. However, while in diabetic animal models the inhibitors of aldose reductase (ALR2, the first enzyme of this pathway) seem to be active, 16 years of clinical trials, based mainly on neuropathy, have been inconclusive; only one drug currently being marketed. Newer potent and selective aldose reductase inhibitors have been discovered in the last few years, but the lack of commercial success has probably led to the very rapid decrease in the number of patents relating to newer aldose reductase inhibitors. Inhibition of the second enzyme of this pathway, sorbitol dehydrogenase (SDH), has been shown to be detrimental. Other approaches for the prevention and the delay of progression of diabetic complications seem to be more promising, namely, the inhibition of the formation of advanced glycated end products (AGEs) or protein kinase C (PKC) β2 inhibition; compounds acting on these two pathways have proved effective in retarding the development of diabetic complications in animal models and some products are in clinical trials at the moment. Renewed attention has been paid to vascular involvement in the pathogenesis of diabetic neuropathy; the biological activity of C-peptide and the role of endothelin-1 (ET-1) in diabetic vascular disease are emerging as a new research area for the treatment of diabetic complications.
Pharmacological approaches to the treatment of diabetic complications / L. Costantino, G. Rastelli, M.C. Gamberini, D. Barlocco. - In: EXPERT OPINION ON THERAPEUTIC PATENTS. - ISSN 1354-3776. - 10:8(2000), pp. 1245-1262.
Pharmacological approaches to the treatment of diabetic complications
D. BarloccoUltimo
2000
Abstract
Diabetes is often accompanied by several long-term complications such as neuropathy, nephropathy, retinopathy, cataract and angiopathy; their occurrence has been linked to the modification of the physiological levels of glycaemia. Several interrelated metabolic pathways have been implicated in the toxic effects of glucose; the polyol pathways was one of the first considered. However, while in diabetic animal models the inhibitors of aldose reductase (ALR2, the first enzyme of this pathway) seem to be active, 16 years of clinical trials, based mainly on neuropathy, have been inconclusive; only one drug currently being marketed. Newer potent and selective aldose reductase inhibitors have been discovered in the last few years, but the lack of commercial success has probably led to the very rapid decrease in the number of patents relating to newer aldose reductase inhibitors. Inhibition of the second enzyme of this pathway, sorbitol dehydrogenase (SDH), has been shown to be detrimental. Other approaches for the prevention and the delay of progression of diabetic complications seem to be more promising, namely, the inhibition of the formation of advanced glycated end products (AGEs) or protein kinase C (PKC) β2 inhibition; compounds acting on these two pathways have proved effective in retarding the development of diabetic complications in animal models and some products are in clinical trials at the moment. Renewed attention has been paid to vascular involvement in the pathogenesis of diabetic neuropathy; the biological activity of C-peptide and the role of endothelin-1 (ET-1) in diabetic vascular disease are emerging as a new research area for the treatment of diabetic complications.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.