The Lynx arc, with a redshift of 3.357, was discovered during spectroscopic follow-up of the z=0.570 cluster RX J0848+4456 from the ROSAT Deep Cluster Survey. The arc is characterized by a very red R-K color and strong, narrow emission lines. Analysis of HST WFPC2 imaging and Keck optical and infrared spectroscopy shows that the arc is an H II galaxy magnified by a factor of ~10 by a complex cluster environment. The high intrinsic luminosity, the emission-line spectrum, the absorption components seen in Lyα and C IV, and the rest-frame ultraviolet continuum are all consistent with a simple H II region model containing ~106 hot O stars. The best-fit parameters for this model imply a very hot ionizing continuum (TBB~=80,000 K), a high ionization parameter (logU~=-1), and a low nebular metallicity (Z/Zsolar~=0.05). The narrowness of the emission lines requires a low mass-to-light ratio for the ionizing stars, suggestive of an extremely low metallicity stellar cluster. The apparent overabundance of silicon in the nebula could indicate enrichment by past pair-instability supernovae, requiring stars more massive than ~140 Msolar.

Massive Star Formation in a Gravitationally Lensed Hii Galaxy at z= 3.357 / R. A. E. Fosbury, M. Villar‐Martin, A. Humphrey, M. Lombardi, P. Rosati, D. Stern, R. N. Hook, B. P. Holden, S. A. Stanford, G. K. Squires, M. Rauch, W. L. W. Sargent. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 596:2(2003 Oct), pp. 797-809.

Massive Star Formation in a Gravitationally Lensed Hii Galaxy at z= 3.357

M. Lombardi;
2003

Abstract

The Lynx arc, with a redshift of 3.357, was discovered during spectroscopic follow-up of the z=0.570 cluster RX J0848+4456 from the ROSAT Deep Cluster Survey. The arc is characterized by a very red R-K color and strong, narrow emission lines. Analysis of HST WFPC2 imaging and Keck optical and infrared spectroscopy shows that the arc is an H II galaxy magnified by a factor of ~10 by a complex cluster environment. The high intrinsic luminosity, the emission-line spectrum, the absorption components seen in Lyα and C IV, and the rest-frame ultraviolet continuum are all consistent with a simple H II region model containing ~106 hot O stars. The best-fit parameters for this model imply a very hot ionizing continuum (TBB~=80,000 K), a high ionization parameter (logU~=-1), and a low nebular metallicity (Z/Zsolar~=0.05). The narrowness of the emission lines requires a low mass-to-light ratio for the ionizing stars, suggestive of an extremely low metallicity stellar cluster. The apparent overabundance of silicon in the nebula could indicate enrichment by past pair-instability supernovae, requiring stars more massive than ~140 Msolar.
Settore FIS/05 - Astronomia e Astrofisica
ott-2003
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/187114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 95
social impact