This paper summarizes the most recent data obtained in the authors' laboratory on the metabolism of testosterone and progesterone in neurons and in the glia. 1. The activities of 5 alpha-reductase (the enzyme that converts testosterone into dihydrotestosterone; DHT) and of 3 alpha-hydroxy steroid dehydrogenase (the enzyme that converts DHT into 5 alpha-androstane-3 alpha, 17 beta-diol; 3 alpha-diol) were first evaluated in primary cultures of neurons, oligodendrocytes, and type-1 and type-2 astrocytes, obtained from the fetal or neonatal rat brain. The formation of DHT and 3 alpha-diol was evaluated incubating the different cultures with labeled testosterone or labeled DHT as substrates. The results obtained indicate that the formation of DHT takes place preferentially in neurons; however, also type-2 astrocytes and oligodendrocytes possess considerable 5 alpha-reductase activity. A completely different localization was observed for 3 alpha-hydroxysteroid dehydrogenase; the formation of 3 alpha-diol appears to be prevalently, if not exclusively, present in type-1 astrocytes; 3 alpha-diol is formed in very low yields by neurons, type-2 astrocytes, and oligodendrocytes. Moreover, the results indicate that, in type 1 astrocytes, both 5 alpha-reductase and 3 alpha-HSD are stimulated by coculture with neurons and by the addition of neuron-conditioned medium, suggesting that secretory products released by neurons might intervene in the control of glial cell function. 2. Subsequently it was shown that, similarly to what happens when testosterone is used as the substrate, 5 alpha-reductase, which metabolizes progesterone into 5 alpha-pregnane-3,20-dione, (DHP), shows a significantly higher activity in neurons than in glial cells; however, also type-1 and type-2 astrocytes as well as oligodendrocytes possess some ability to 5 alpha-reduce progesterone. On the contrary, 3 alpha-hydroxysteroid dehydrogenase, the enzyme which converts DHP into 5 alpha-pregnane-3 alpha-ol-20-one (THP), appears to be present mainly in type-1 astrocytes; much lower levels of this enzyme are present in neurons and in type-2 astrocytes. At variance with the previous results obtained using androgens as precursors, oligodendrocytes show considerable 3 alpha-hydroxysteroid dehydrogenase activity, even if this is statistically lowe than that present in type-1 astrocytes. The existence of isoenzymatic forms of the enzymes involved in androgen and progesterone metabolism is discussed.

Testosterone and progesterone metabolism in the central nervous system: cellular localization and mechanism of control of the enzymes involved / L. Martini, F. Celotti, R. C. Melcangi. - In: CELLULAR AND MOLECULAR NEUROBIOLOGY. - ISSN 0272-4340. - 16:3(1996 Jun), pp. 271-282.

Testosterone and progesterone metabolism in the central nervous system: cellular localization and mechanism of control of the enzymes involved

L. Martini
Primo
;
F. Celotti
Secondo
;
R. C. Melcangi
Ultimo
1996

Abstract

This paper summarizes the most recent data obtained in the authors' laboratory on the metabolism of testosterone and progesterone in neurons and in the glia. 1. The activities of 5 alpha-reductase (the enzyme that converts testosterone into dihydrotestosterone; DHT) and of 3 alpha-hydroxy steroid dehydrogenase (the enzyme that converts DHT into 5 alpha-androstane-3 alpha, 17 beta-diol; 3 alpha-diol) were first evaluated in primary cultures of neurons, oligodendrocytes, and type-1 and type-2 astrocytes, obtained from the fetal or neonatal rat brain. The formation of DHT and 3 alpha-diol was evaluated incubating the different cultures with labeled testosterone or labeled DHT as substrates. The results obtained indicate that the formation of DHT takes place preferentially in neurons; however, also type-2 astrocytes and oligodendrocytes possess considerable 5 alpha-reductase activity. A completely different localization was observed for 3 alpha-hydroxysteroid dehydrogenase; the formation of 3 alpha-diol appears to be prevalently, if not exclusively, present in type-1 astrocytes; 3 alpha-diol is formed in very low yields by neurons, type-2 astrocytes, and oligodendrocytes. Moreover, the results indicate that, in type 1 astrocytes, both 5 alpha-reductase and 3 alpha-HSD are stimulated by coculture with neurons and by the addition of neuron-conditioned medium, suggesting that secretory products released by neurons might intervene in the control of glial cell function. 2. Subsequently it was shown that, similarly to what happens when testosterone is used as the substrate, 5 alpha-reductase, which metabolizes progesterone into 5 alpha-pregnane-3,20-dione, (DHP), shows a significantly higher activity in neurons than in glial cells; however, also type-1 and type-2 astrocytes as well as oligodendrocytes possess some ability to 5 alpha-reduce progesterone. On the contrary, 3 alpha-hydroxysteroid dehydrogenase, the enzyme which converts DHP into 5 alpha-pregnane-3 alpha-ol-20-one (THP), appears to be present mainly in type-1 astrocytes; much lower levels of this enzyme are present in neurons and in type-2 astrocytes. At variance with the previous results obtained using androgens as precursors, oligodendrocytes show considerable 3 alpha-hydroxysteroid dehydrogenase activity, even if this is statistically lowe than that present in type-1 astrocytes. The existence of isoenzymatic forms of the enzymes involved in androgen and progesterone metabolism is discussed.
English
Rats; Coculture Techniques; Animals; Testosterone; Progesterone; Neuroglia; Neurons; Cell Communication; Dihydrotestosterone; Androstanes; Central Nervous System; 3-Oxo-5-alpha-Steroid 4-Dehydrogenase
Settore MED/13 - Endocrinologia
Settore MED/04 - Patologia Generale
Articolo
Esperti anonimi
giu-1996
16
3
271
282
Pubblicato
Periodico con rilevanza internazionale
Pubmed
info:eu-repo/semantics/article
Testosterone and progesterone metabolism in the central nervous system: cellular localization and mechanism of control of the enzymes involved / L. Martini, F. Celotti, R. C. Melcangi. - In: CELLULAR AND MOLECULAR NEUROBIOLOGY. - ISSN 0272-4340. - 16:3(1996 Jun), pp. 271-282.
none
Prodotti della ricerca::01 - Articolo su periodico
3
262
Article (author)
no
L. Martini, F. Celotti, R. C. Melcangi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/185103
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 48
social impact