Cannabinoids appear atypical as drugs of abuse since controversial data exist concerning the ability to lower the thresholds for electrical self-stimulation (Stark and Dews, 1980; Gardner et al., 1988; Gardner, 1992) and to support self-administration (Martellotta et al., 1998; Tanda et al., 2000) or conditioned place preference in animals (Lepore et al., 1995; Parker and Gillies, 1995; McGregor et al., 1996; Sañudo-Peña et al., 1997; Chaperon et al., 1998; Hutcheson et al., 1998; Mallet and Beninger, 1998; Cheer et al., 2000; Valjent and Maldonado, 2000). Opioids and cannabinoids share some pharmacological properties (Manzanares et al., 1999). The most interactions were found in antinociception (Welch and Stevens, 1992; Smith et al., 1994) and, to a lesser extent, in drug reinforcement (Chen et al., 1990; Vela et al., 1995; Tanda et al., 1997). In the present study we asked whether: (1) a potent synthetic cannabinoid receptor agonist, [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptil)-phenyl]-trans-4-(3-hydroxy propyl) cyclohexanol] (CP 55,940) (from 10 to 40 microg/kg), which binds to the brain cannabinoid receptors with high affinity (Herkenham et al., 1991), would induce conditioned place preference, in comparison with heroin (from 0.1 to 5 mg/kg); (2) what type of receptor was involved; (3) what kind of interaction there was between the two drugs, when given in combination, on reward. CP 55,940 elicited a conditioned place preference only at a dose of 20 microg/kg similar in intensity to that of heroin (2 mg/kg). The reinforcing properties of the cannabinoid agonist were fully antagonised by pretreatment with the brain cannabinoid receptor-1 (CB(1)) antagonist, [N-piperidino-5-(4-chlorophenyl) 1-(2,4-dichloro-phenyl)-4-methyl pyrazole-3-carboxamide hydrochloride] (SR 141716A) and naloxone. The combination of CP 55,940 and heroin, at the reinforcing doses, led to a reward which did not show any additive effect. Taken together these findings are important for understanding how the cannabinoids produce reward and the interconnection of the opioid and cannabinoid system in the motivation.

Conditioned place preference induced by the cannabinoid agonist CP 55,940: interaction with the opioid system / D. Braida, M. Pozzi, R. Cavallini, M. Sala. - In: NEUROSCIENCE. - ISSN 0306-4522. - 104:4(2001), pp. 923-926. [10.1016/S0306-4522(01)00210-X]

Conditioned place preference induced by the cannabinoid agonist CP 55,940: interaction with the opioid system

D. Braida;R. Cavallini;M. Sala
2001

Abstract

Cannabinoids appear atypical as drugs of abuse since controversial data exist concerning the ability to lower the thresholds for electrical self-stimulation (Stark and Dews, 1980; Gardner et al., 1988; Gardner, 1992) and to support self-administration (Martellotta et al., 1998; Tanda et al., 2000) or conditioned place preference in animals (Lepore et al., 1995; Parker and Gillies, 1995; McGregor et al., 1996; Sañudo-Peña et al., 1997; Chaperon et al., 1998; Hutcheson et al., 1998; Mallet and Beninger, 1998; Cheer et al., 2000; Valjent and Maldonado, 2000). Opioids and cannabinoids share some pharmacological properties (Manzanares et al., 1999). The most interactions were found in antinociception (Welch and Stevens, 1992; Smith et al., 1994) and, to a lesser extent, in drug reinforcement (Chen et al., 1990; Vela et al., 1995; Tanda et al., 1997). In the present study we asked whether: (1) a potent synthetic cannabinoid receptor agonist, [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptil)-phenyl]-trans-4-(3-hydroxy propyl) cyclohexanol] (CP 55,940) (from 10 to 40 microg/kg), which binds to the brain cannabinoid receptors with high affinity (Herkenham et al., 1991), would induce conditioned place preference, in comparison with heroin (from 0.1 to 5 mg/kg); (2) what type of receptor was involved; (3) what kind of interaction there was between the two drugs, when given in combination, on reward. CP 55,940 elicited a conditioned place preference only at a dose of 20 microg/kg similar in intensity to that of heroin (2 mg/kg). The reinforcing properties of the cannabinoid agonist were fully antagonised by pretreatment with the brain cannabinoid receptor-1 (CB(1)) antagonist, [N-piperidino-5-(4-chlorophenyl) 1-(2,4-dichloro-phenyl)-4-methyl pyrazole-3-carboxamide hydrochloride] (SR 141716A) and naloxone. The combination of CP 55,940 and heroin, at the reinforcing doses, led to a reward which did not show any additive effect. Taken together these findings are important for understanding how the cannabinoids produce reward and the interconnection of the opioid and cannabinoid system in the motivation.
Settore BIO/14 - Farmacologia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/184751
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 116
  • ???jsp.display-item.citation.isi??? 107
social impact