We consider the approximation of curvature dependent geometric front evolutions by singularly perturbed parabolic double obstacle problems with small parameter epsilon. We give a simplified proof of optimal interface error estimates of order O(epsilon2), valid in the smooth regime, which is based on constructing precise barriers, perturbing the forcing term and exploiting the maximum principle.

Quadratic rate of convergence for curvature dependent smooth interfaces: a simple proof / R.H. Nochetto, M. Paolini, C. Verdi. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - 7:4(1994 Jul), pp. 59-63.

Quadratic rate of convergence for curvature dependent smooth interfaces: a simple proof

C. Verdi
Ultimo
1994

Abstract

We consider the approximation of curvature dependent geometric front evolutions by singularly perturbed parabolic double obstacle problems with small parameter epsilon. We give a simplified proof of optimal interface error estimates of order O(epsilon2), valid in the smooth regime, which is based on constructing precise barriers, perturbing the forcing term and exploiting the maximum principle.
Double obstacle; Geometric motion; Interface error estimates.; Reaction-diffusion
Settore MAT/08 - Analisi Numerica
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/183281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact