The present data show that the gene expression of FGF-1 and FGF-2 is regulated by corticosteroids in rat type 1 astrocytes. In particular, the gene expression of FGF-1 is modulated by corticosteroids acting both on type I (minerocorticoid) and type II (glucocorticoid) receptors. In fact, at short times of exposure (2 h) a slight decrease in FGF-1 mRNA levels is induced by deoxycorticosterone, a steroid able to interact with the type I receptors; a similar effect is observed at 6 h following exposure to corticosterone or its 5alpha-reduced metabolite, dihydrocorticosterone. Conversely, at longer times of exposure (24 h) corticosterone is able to strongly increase FGF-1 mRNA levels. Both effects of corticosterone (inhibition and stimulation) were duplicated by dexamethasone, indicating that both effects occur via the type II receptors. Interestingly, the 5alpha-3alpha-reduced metabolite of deoxycorticosterone, tetrahydrodeoxycorticosterone, which does not interact with either corticosteroid receptors, is able to stimulate (at 6 and 24 h of exposure) the gene expression of FGF-1. It is possible that this effect might be induced via the GABA(A) receptor, since muscimol, an agonist of this receptor, exerts a similar effect. The situation is different in the case of FGF-2. The mRNA levels of this growth factor are only stimulated by steroids interacting with type II receptors. Altogether, these observations indicate that corticosteroids modulate the levels of FGF-1 and FGF-2 gene expression in astroglial cells by interaction with classical (type I and II) or nonclassical (GABA(A) receptor) steroid receptors.

Corticosteroids regulate the gene expression of FGF-1 and FGF-2 in cultured rat astrocytes / V. Magnaghi, M.A. Riva, I. Cavarretta, L. Martini, R.C. Melcangi. - In: JOURNAL OF MOLECULAR NEUROSCIENCE. - ISSN 0895-8696. - 15:1(2000 Aug), pp. 11-18.

Corticosteroids regulate the gene expression of FGF-1 and FGF-2 in cultured rat astrocytes

V. Magnaghi
Primo
;
M.A. Riva
Secondo
;
L. Martini
Penultimo
;
R.C. Melcangi
Ultimo
2000

Abstract

The present data show that the gene expression of FGF-1 and FGF-2 is regulated by corticosteroids in rat type 1 astrocytes. In particular, the gene expression of FGF-1 is modulated by corticosteroids acting both on type I (minerocorticoid) and type II (glucocorticoid) receptors. In fact, at short times of exposure (2 h) a slight decrease in FGF-1 mRNA levels is induced by deoxycorticosterone, a steroid able to interact with the type I receptors; a similar effect is observed at 6 h following exposure to corticosterone or its 5alpha-reduced metabolite, dihydrocorticosterone. Conversely, at longer times of exposure (24 h) corticosterone is able to strongly increase FGF-1 mRNA levels. Both effects of corticosterone (inhibition and stimulation) were duplicated by dexamethasone, indicating that both effects occur via the type II receptors. Interestingly, the 5alpha-3alpha-reduced metabolite of deoxycorticosterone, tetrahydrodeoxycorticosterone, which does not interact with either corticosteroid receptors, is able to stimulate (at 6 and 24 h of exposure) the gene expression of FGF-1. It is possible that this effect might be induced via the GABA(A) receptor, since muscimol, an agonist of this receptor, exerts a similar effect. The situation is different in the case of FGF-2. The mRNA levels of this growth factor are only stimulated by steroids interacting with type II receptors. Altogether, these observations indicate that corticosteroids modulate the levels of FGF-1 and FGF-2 gene expression in astroglial cells by interaction with classical (type I and II) or nonclassical (GABA(A) receptor) steroid receptors.
5α- and 5α-3α-reduced metabolites; Astrocytes; Corticosterone; FGF-1; FGF-2; GABAA receptor; Type I and II corticosteroid receptors
Settore MED/13 - Endocrinologia
Settore BIO/14 - Farmacologia
Settore BIO/09 - Fisiologia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/182827
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact