The Cosmetic, Toiletry and Fragrance Association (CTFA) Evaluation of Alternative Program is an evaluation of the relationship between Draize ocular safety test data and comparable data from a selection of in vitro tests. In Phase II, 18 representative oil/water-based personal-care formulations were subjected to the Draize primary eye safety test and 30 in vitro assay protocols (14 different types of in vitro endpoints were evaluated; the remainder were protocol variations). Correlation of in vitro with in vivo data was evaluated using analysis of sensitivity/specificity and statistical analysis of the relationship between maximum average Draize score (MAS) and in vitro endpoint. Regression modelling is the primary approach adopted in the CTFA Program for evaluating in vitro assay perfomance. The objective of regression analysis is to predict MAS for a given test material (and to place upper and lower prediction interval bounds on the range in which the MAS is anticipated to fall with high probability) conditional on observing an in vitro assay score for that material. The degree of confidence in prediction is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curves: the narrower the prediction interval, the more predictive of the Draize score is the in vitro test result. 16 assays were shown to have the greatest agreement with the Draize procedure and were therefore selected for regression analysis. Based on the magnitude of the 95% prediction bounds of each of the 16 selected assays over the range of test data, it may be inferred that prediction of MAS values from experimentally determined in vitro scores is more accurate for oil/water-based formulations with lower rather than higher irritancy potential. The assays selected for modelling in Phase II generally exhibited weaker relationships with MAS than those selected in Phase I (evaluated using hydroalcoholic formulations), even though several assays were common to both Phases.

The CTFA Evaluation of Alternatives Program: An evaluation of in vitro alternatives to the Draize primary eye irritation test. (Phase II) oil/water emulsions / S.D. Gettings, L.C. Dipasquale, D.M. Bagley, P.L. Casteron, M. Chudkowski, R.D. Curren, J.L. Demetrulias, P.I. Feder, C.L. Galli, R. Gay et all. - In: FOOD AND CHEMICAL TOXICOLOGY. - ISSN 0278-6915. - 32:10(1994 Oct), pp. 943-976. [10.1016/0278-6915(94)90092-2]

The CTFA Evaluation of Alternatives Program: An evaluation of in vitro alternatives to the Draize primary eye irritation test. (Phase II) oil/water emulsions

C.L. Galli
Penultimo
;
1994

Abstract

The Cosmetic, Toiletry and Fragrance Association (CTFA) Evaluation of Alternative Program is an evaluation of the relationship between Draize ocular safety test data and comparable data from a selection of in vitro tests. In Phase II, 18 representative oil/water-based personal-care formulations were subjected to the Draize primary eye safety test and 30 in vitro assay protocols (14 different types of in vitro endpoints were evaluated; the remainder were protocol variations). Correlation of in vitro with in vivo data was evaluated using analysis of sensitivity/specificity and statistical analysis of the relationship between maximum average Draize score (MAS) and in vitro endpoint. Regression modelling is the primary approach adopted in the CTFA Program for evaluating in vitro assay perfomance. The objective of regression analysis is to predict MAS for a given test material (and to place upper and lower prediction interval bounds on the range in which the MAS is anticipated to fall with high probability) conditional on observing an in vitro assay score for that material. The degree of confidence in prediction is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curves: the narrower the prediction interval, the more predictive of the Draize score is the in vitro test result. 16 assays were shown to have the greatest agreement with the Draize procedure and were therefore selected for regression analysis. Based on the magnitude of the 95% prediction bounds of each of the 16 selected assays over the range of test data, it may be inferred that prediction of MAS values from experimentally determined in vitro scores is more accurate for oil/water-based formulations with lower rather than higher irritancy potential. The assays selected for modelling in Phase II generally exhibited weaker relationships with MAS than those selected in Phase I (evaluated using hydroalcoholic formulations), even though several assays were common to both Phases.
Settore BIO/14 - Farmacologia
ott-1994
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/182588
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 49
social impact