Plasma-membrane composition plays a crucial role in most of the cellular functions that depend on membrane processes. In virtually all cell types the proteolytic processing of Alzheimer amyloid precursor protein (APP) to generate soluble APP (sAPP) is believed to occur at the plasma membrane or in its immediate proximity. Alteration of this metabolic pathway has been linked to the pathogenesis of Alzheimer's disease. We analysed the effect of membrane cholesterol enrichment on APP metabolism. Incubation of COS cells with increasing concentrations of non-esterified cholesterol carried by rabbit β-very low-density lipoprotein caused a dose-dependent inhibition of sAPP release: 70% inhibition with 10 μg/ml non-esterified cholesterol. A less pronounced inhibitory effect was observed on treatment with human low-density lipoprotein. Inhibition of sAPP release was independent of receptor-mediated lipoprotein metabolism since simultaneous treatment with chloroquine did not modify the effect of lipoprotein treatment. In addition, treatment with cholesterol dissolved in either ethanol or methyl-β-cyclodextrin elicited the same effect. Excess non-esterified cholesterol did not cause cell toxicity. Cell cholesterol mass inversely correlated with sAPP release. Progesterone, which inhibits shuttling of nonesterified cholesterol between the plasma membrane and intracellular pools, had no effect on the inhibition of sAPP release from cholesterol-loaded cells, providing indirect evidence that cholesterol may act at the plasma membrane.

Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content / M. Racchi, R. Baetta, N. Salvietti, P. Ianna, G. Franceschini, R. Paoletti, R. Fumagalli, S. Govoni, M. Trabucchi, M. Soma. - In: BIOCHEMICAL JOURNAL. - ISSN 0264-6021. - 322:3(1997), pp. 893-898.

Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content

G. Franceschini;
1997

Abstract

Plasma-membrane composition plays a crucial role in most of the cellular functions that depend on membrane processes. In virtually all cell types the proteolytic processing of Alzheimer amyloid precursor protein (APP) to generate soluble APP (sAPP) is believed to occur at the plasma membrane or in its immediate proximity. Alteration of this metabolic pathway has been linked to the pathogenesis of Alzheimer's disease. We analysed the effect of membrane cholesterol enrichment on APP metabolism. Incubation of COS cells with increasing concentrations of non-esterified cholesterol carried by rabbit β-very low-density lipoprotein caused a dose-dependent inhibition of sAPP release: 70% inhibition with 10 μg/ml non-esterified cholesterol. A less pronounced inhibitory effect was observed on treatment with human low-density lipoprotein. Inhibition of sAPP release was independent of receptor-mediated lipoprotein metabolism since simultaneous treatment with chloroquine did not modify the effect of lipoprotein treatment. In addition, treatment with cholesterol dissolved in either ethanol or methyl-β-cyclodextrin elicited the same effect. Excess non-esterified cholesterol did not cause cell toxicity. Cell cholesterol mass inversely correlated with sAPP release. Progesterone, which inhibits shuttling of nonesterified cholesterol between the plasma membrane and intracellular pools, had no effect on the inhibition of sAPP release from cholesterol-loaded cells, providing indirect evidence that cholesterol may act at the plasma membrane.
Settore BIO/14 - Farmacologia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/181702
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 150
  • ???jsp.display-item.citation.isi??? 141
social impact