The mechanism of action of the flavoprotein D-aspartate oxidase (EC 1.4.3.1) has been investigated by steady-state and stopped flow kinetic studies using D-aspartate and O2 as substrates in 50 mM KPi, 0.3 mM EDTA, pH 7.4, 4 degrees C. Steady-state results indicate that a ternary complex containing enzyme, O2, and substrate (or product) is an obligatory intermediate in catalysis. The kinetic parameters are turnover number = 11.1 s-1, Km(D-Asp) = 2.2 x 10(-3) M, Km(O2) = 1.7 x 10(-4) M. Rapid reaction studies show that 1) the reductive half reaction is essentially irreversible with a maximum rate of reduction of 180 s-1; 2) the free reduced enzyme cannot be the species which is reoxidized during turnover since its reoxidation by oxygen (second order rate constant equal to 5.3 x 10(2) M-1 s-1) is too slow to be of relevance in catalysis; 3) reduced enzyme can bind a ligand rapidly and be reoxidized as a complex at a rate faster than that observed for the free reduced enzyme; 4) the rate of reoxidation of reduced enzyme by oxygen during turnover is dependent on both O2 and D-aspartate concentrations (second order rate constant of reaction between O2 and reduced enzyme-substrate complex equal to 6.2 x 10(4) M-1 s-1); and 5) the rate-limiting step in catalysis occurs after reoxidation of the enzyme and before its reduction in the following turnover. A mechanism involving reduction of enzyme by substrate, dissociation of product from reduced enzyme, binding of a second molecule of substrate to the reduced enzyme, and reoxidation of the reduced enzyme-substrate complex is proposed for the enzyme-catalyzed oxidation of D-aspartate.

The kinetic mechanism of beef kidney D-aspartate oxidase / A. Negri, V. Massey, C.H. Williams, L.M. Schopfer. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 263:27(1988), pp. 13557-13563.

The kinetic mechanism of beef kidney D-aspartate oxidase

A. Negri
Primo
;
1988

Abstract

The mechanism of action of the flavoprotein D-aspartate oxidase (EC 1.4.3.1) has been investigated by steady-state and stopped flow kinetic studies using D-aspartate and O2 as substrates in 50 mM KPi, 0.3 mM EDTA, pH 7.4, 4 degrees C. Steady-state results indicate that a ternary complex containing enzyme, O2, and substrate (or product) is an obligatory intermediate in catalysis. The kinetic parameters are turnover number = 11.1 s-1, Km(D-Asp) = 2.2 x 10(-3) M, Km(O2) = 1.7 x 10(-4) M. Rapid reaction studies show that 1) the reductive half reaction is essentially irreversible with a maximum rate of reduction of 180 s-1; 2) the free reduced enzyme cannot be the species which is reoxidized during turnover since its reoxidation by oxygen (second order rate constant equal to 5.3 x 10(2) M-1 s-1) is too slow to be of relevance in catalysis; 3) reduced enzyme can bind a ligand rapidly and be reoxidized as a complex at a rate faster than that observed for the free reduced enzyme; 4) the rate of reoxidation of reduced enzyme by oxygen during turnover is dependent on both O2 and D-aspartate concentrations (second order rate constant of reaction between O2 and reduced enzyme-substrate complex equal to 6.2 x 10(4) M-1 s-1); and 5) the rate-limiting step in catalysis occurs after reoxidation of the enzyme and before its reduction in the following turnover. A mechanism involving reduction of enzyme by substrate, dissociation of product from reduced enzyme, binding of a second molecule of substrate to the reduced enzyme, and reoxidation of the reduced enzyme-substrate complex is proposed for the enzyme-catalyzed oxidation of D-aspartate.
Settore BIO/10 - Biochimica
1988
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/181310
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact