Objective: Automatic devices have been recently introduced to make the anastomosis procedure quick and efficient when creating a coronary bypass on the beating heart. However, the implantation of these devices could modify the graft configuration, consistently affecting the hemodynamics usually found in the traditional anastomosis. As local fluid dynamics could play a significant role in the onset of vessel wall pathologies, in this article a computational approach was designed to investigate flow patterns in the presence of the Ventrica magnetic vascular positioner (Ventrica MVP) device. Methods: A model of standard hand-sewn anastomosis and of automated magnetic anastomosis were constructed, and the finite volume method was used to simulate in silico realistic graft hemodynamics. Synthetic analytical descriptors i.e., time-averaged wall shear stress (TAWSS), oscillating shear index (OSI) and helical flow index (HFI) were calculated and compared for quantitative assessment of the anastomosis geometry hemodynamic performance. Results: In this case study, the same most critical region was identified for the 2 models as the one with the lowest TAWSS and the highest OSI (TAWSS=0.229, OSI=0.255 for the hand-sewn anastomosis; TAWSS=0.297, OSI=0.171 for the Ventrica MVP). However, the shape of the Ventrica MVP does not induce more critical wall shear stresses, oscillating flow and damped helicity in the graft fluid dynamics, as compared with conventional anastomosis. Conclusions: We found that the use of the Ventrica MVP for the case study under investigation was not associated with more critical fluid dynamics than with conventional hand-sewn anastomosis. Thereby, the device could facilitate beating heart and minimally invasive coronary artery bypass grafting without increasing local hemodynamic-related risks of failure.

Modelling and Fluid Dynamics-Does the Ventrica magnetic vascular positioner (MVP (R)) for coronary artery bypass grafting significantly alter local fluid … / U. Morbiducci, M. Lemma, R. Ponzini, A. Boi, L. Bondavalli, C. Antona, F.M. Montevecchi, A. Redaelli. - In: INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS. - ISSN 0391-3988. - 30:7(2007 Jul), pp. 628-639.

Modelling and Fluid Dynamics-Does the Ventrica magnetic vascular positioner (MVP (R)) for coronary artery bypass grafting significantly alter local fluid …

C. Antona;
2007

Abstract

Objective: Automatic devices have been recently introduced to make the anastomosis procedure quick and efficient when creating a coronary bypass on the beating heart. However, the implantation of these devices could modify the graft configuration, consistently affecting the hemodynamics usually found in the traditional anastomosis. As local fluid dynamics could play a significant role in the onset of vessel wall pathologies, in this article a computational approach was designed to investigate flow patterns in the presence of the Ventrica magnetic vascular positioner (Ventrica MVP) device. Methods: A model of standard hand-sewn anastomosis and of automated magnetic anastomosis were constructed, and the finite volume method was used to simulate in silico realistic graft hemodynamics. Synthetic analytical descriptors i.e., time-averaged wall shear stress (TAWSS), oscillating shear index (OSI) and helical flow index (HFI) were calculated and compared for quantitative assessment of the anastomosis geometry hemodynamic performance. Results: In this case study, the same most critical region was identified for the 2 models as the one with the lowest TAWSS and the highest OSI (TAWSS=0.229, OSI=0.255 for the hand-sewn anastomosis; TAWSS=0.297, OSI=0.171 for the Ventrica MVP). However, the shape of the Ventrica MVP does not induce more critical wall shear stresses, oscillating flow and damped helicity in the graft fluid dynamics, as compared with conventional anastomosis. Conclusions: We found that the use of the Ventrica MVP for the case study under investigation was not associated with more critical fluid dynamics than with conventional hand-sewn anastomosis. Thereby, the device could facilitate beating heart and minimally invasive coronary artery bypass grafting without increasing local hemodynamic-related risks of failure.
Anastomosis; Automatic anastomotic device; Computational fluid dynamics; Coronary bypass graft
Settore MED/23 - Chirurgia Cardiaca
Settore ING-IND/13 - Meccanica Applicata alle Macchine
lug-2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/180621
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact