Neutron powder diffraction experiments at high temperature (300-1600 K) were performed at BENSC (Berlin, D), on synthetic Zn0.97Fe2.02O4, to investigate the cation partitioning of Zn and Fe over the tetrahedral and octahedral sites as a function of T. The data analysis combined Rietveld structure refinements with minimization techniques. The thermodynamic behavior of the thermally activated order-disorder transformation occurring in Zn-ferrite was interpreted by the O'Neill-Navrotsky model (α = 49.3 ± 0.4 and β = -31.6 ± 2.0 kJ/mol) and by the equilibrium Landau theory. We obtain λ2 = 2.813 ± 0.002/K, T(c) = 1022 ± 37 K using a 'pure' Landau approach, and h = -1.164 ± 0.002 kJ/mol, c = 9.868 ± 0.06 kJ/mol, T(c) = -742 ± 10 K, if the configurational contribution to entropy is explicitly accounted. The results are in agreement with the earlier powder XRD work of O'Neill (1992) on quenched specimens, but extend the temperature over which measurements were obtained to 1600 K.

Cation distribution in synthetic zinc ferrite (Zn0.97Fe2.02O4) from in situ high temperature neutron powder diffraction / A. Pavese, D. Levy, A. Hoser. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 85:10(2000 Oct), pp. 1497-1502.

Cation distribution in synthetic zinc ferrite (Zn0.97Fe2.02O4) from in situ high temperature neutron powder diffraction

A. Pavese
Primo
;
2000-10

Abstract

Neutron powder diffraction experiments at high temperature (300-1600 K) were performed at BENSC (Berlin, D), on synthetic Zn0.97Fe2.02O4, to investigate the cation partitioning of Zn and Fe over the tetrahedral and octahedral sites as a function of T. The data analysis combined Rietveld structure refinements with minimization techniques. The thermodynamic behavior of the thermally activated order-disorder transformation occurring in Zn-ferrite was interpreted by the O'Neill-Navrotsky model (α = 49.3 ± 0.4 and β = -31.6 ± 2.0 kJ/mol) and by the equilibrium Landau theory. We obtain λ2 = 2.813 ± 0.002/K, T(c) = 1022 ± 37 K using a 'pure' Landau approach, and h = -1.164 ± 0.002 kJ/mol, c = 9.868 ± 0.06 kJ/mol, T(c) = -742 ± 10 K, if the configurational contribution to entropy is explicitly accounted. The results are in agreement with the earlier powder XRD work of O'Neill (1992) on quenched specimens, but extend the temperature over which measurements were obtained to 1600 K.
Settore GEO/06 - Mineralogia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/179299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
social impact