Let X be a smooth complex projective variety of dimension n \geq 2. A notion of geometric genus p_g(X,E) for ample vector bundeles E of rank r < n on X admitting some regular sections is introduced. The following inequality holds: p_g(X,E) \geq h^{n-r,0}(X). The question of characterizing equalityis discussed and the answer is given for E decomposable of corank 2. Some conjectures suggested by the result are formulated.

Geometric genera for ample vector bundles with regular sections / A. Lanteri. - In: REVISTA MATEMATICA COMPLUTENSE. - ISSN 1139-1138. - 13:1(2000), pp. 33-48.

Geometric genera for ample vector bundles with regular sections

A. Lanteri
Primo
2000

Abstract

Let X be a smooth complex projective variety of dimension n \geq 2. A notion of geometric genus p_g(X,E) for ample vector bundeles E of rank r < n on X admitting some regular sections is introduced. The following inequality holds: p_g(X,E) \geq h^{n-r,0}(X). The question of characterizing equalityis discussed and the answer is given for E decomposable of corank 2. Some conjectures suggested by the result are formulated.
ample vectoe bundles ; geometric genus ; adjunction
Settore MAT/03 - Geometria
http://dmle.cindoc.csic.es/pdf/REVISTAMATEMATICACOMPLUTENSE_2000_13_01_02.pdf
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/178617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact