Intragenic polymorphisms in the vitamin D receptor gene are linked to disc degeneration features, suggesting that alterations in the vitamer-mediated signalling could be involved in the pathophysiology of the disc and that interaction of disc cells with vitamin D metabolites may be critical for disc health. The vitamer-mediated modulation of disc cells proliferation, metabolic activity, extracellular matrix (ECM) genes expression and proteins production was investigated. It was stated that disc cells express vitamin D receptor and are very sensitive to metabolic stimuli. In monolayer cultures, 1,25(OH)(2)D(3), but not 24,25(OH)(2)D(3), determined an inhibition of the proliferation and regulated also the ECM genes expression in nucleus pulposus and annulus fibrosus cells. Micromass cultures induced a more physiologic expression pattern of extracellular matrix genes. Cells Treatment with vitamin D metabolites did not result in relevant modifications of glycosaminoglycans production, except for annulus cells, whose production was reduced after 1,25(OH)(2)D(3) treatment. Moreover, a reduced glycosaminoglycans staining in both cell types and a significant reduced aggrecan gene expression in annulus cells treated with 1,25(OH)(2)D(3) were observed. A reduction of collagen I and II staining in annulus cells 1,25(OH)(2)D(3) treated, in accordance with a downregulation of collagen genes expression, was also registered. Finally, the vitamin D receptor gene expression did not show significant metabolite-mediated modification in monolayer or micromass cultures. These findings could enhance new insights on the biochemical mechanisms regulated by vitamin D in disc cartilage and possibly involved in the development of physiological/pathological modifications of the disc.

Metabolic effects of vitamin D active metabolites in monolayer and micromass cultures of nucleus pulposus and annulus fibrosus cells isolated from human intervertebral disc / A. Colombini, P. Lanteri, G. Lombardi, D. Grasso, C. Recordati, A. Lovi, G. Banfi, R. Bassani, M. Brayda Bruno. - In: THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY. - ISSN 1357-2725. - 44:6(2012), pp. 1019-1030.

Metabolic effects of vitamin D active metabolites in monolayer and micromass cultures of nucleus pulposus and annulus fibrosus cells isolated from human intervertebral disc

C. Recordati;G. Banfi;
2012

Abstract

Intragenic polymorphisms in the vitamin D receptor gene are linked to disc degeneration features, suggesting that alterations in the vitamer-mediated signalling could be involved in the pathophysiology of the disc and that interaction of disc cells with vitamin D metabolites may be critical for disc health. The vitamer-mediated modulation of disc cells proliferation, metabolic activity, extracellular matrix (ECM) genes expression and proteins production was investigated. It was stated that disc cells express vitamin D receptor and are very sensitive to metabolic stimuli. In monolayer cultures, 1,25(OH)(2)D(3), but not 24,25(OH)(2)D(3), determined an inhibition of the proliferation and regulated also the ECM genes expression in nucleus pulposus and annulus fibrosus cells. Micromass cultures induced a more physiologic expression pattern of extracellular matrix genes. Cells Treatment with vitamin D metabolites did not result in relevant modifications of glycosaminoglycans production, except for annulus cells, whose production was reduced after 1,25(OH)(2)D(3) treatment. Moreover, a reduced glycosaminoglycans staining in both cell types and a significant reduced aggrecan gene expression in annulus cells treated with 1,25(OH)(2)D(3) were observed. A reduction of collagen I and II staining in annulus cells 1,25(OH)(2)D(3) treated, in accordance with a downregulation of collagen genes expression, was also registered. Finally, the vitamin D receptor gene expression did not show significant metabolite-mediated modification in monolayer or micromass cultures. These findings could enhance new insights on the biochemical mechanisms regulated by vitamin D in disc cartilage and possibly involved in the development of physiological/pathological modifications of the disc.
Real-Time Polymerase Chain Reaction ; Receptors, Calcitriol ; Humans ; Cell Proliferation ; Intervertebral Disc ; Base Sequence ; Vitamin D ; Adult ; DNA Primers ; Middle Aged ; Immunohistochemistry ; Female ; Male
Settore BIO/12 - Biochimica Clinica e Biologia Molecolare Clinica
2012
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1357272512001045-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/177912
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact