Building on ideas of Pollack and Stevens, we present an efficient algorithm for integrating rigid analytic functions against measures obtained from automorphic forms on definite quaternion algebras. We then apply these methods, in conjunction with the Jacquet-Langlands correspondence and the Cerednik-Drinfeld theorem, to the computation of p-adic periods and Heegner points on elliptic curves defined over ℚ and \mathbbQ(Ö5){\mathbb{Q}}(\sqrt{5}) which are uniformized by Shimura curves.

Heegner points, p-adic L-functions, and the Cerednik-Drinfeld uniformization / M. Bertolini, H. Darmon. - In: INVENTIONES MATHEMATICAE. - ISSN 0020-9910. - 131:3(1998), pp. 453-491.

Heegner points, p-adic L-functions, and the Cerednik-Drinfeld uniformization

M. Bertolini;
1998

Abstract

Building on ideas of Pollack and Stevens, we present an efficient algorithm for integrating rigid analytic functions against measures obtained from automorphic forms on definite quaternion algebras. We then apply these methods, in conjunction with the Jacquet-Langlands correspondence and the Cerednik-Drinfeld theorem, to the computation of p-adic periods and Heegner points on elliptic curves defined over ℚ and \mathbbQ(Ö5){\mathbb{Q}}(\sqrt{5}) which are uniformized by Shimura curves.
Settore MAT/03 - Geometria
INVENTIONES MATHEMATICAE
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/177804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact