We show that, for any stochastic event p of period n, there exists a measure-once one-way quantum finite automaton (1qfa) with at most 2 √ 6n + 25 states inducing the event ap + b, for constants a > 0, b≥ 0, satisfying a+b ≤1. This fact is proved by designing an algorithm which constructs the desired 1qfa in polynomial time. As a consequence, we get that any periodic language of period n can be accepted with isolated cut point by a 1qfa with no more than 2 √ 6n+26 states. Our results give added evidence of the strength of measure-once 1qfa’s with respect to classical automata.

Upper bounds on the size of one-way quantum finite automata / C. Mereghetti, B. Palano (LECTURE NOTES IN COMPUTER SCIENCE). - In: Theoretical Computer Science / [a cura di] A. Restivo, S. Ronchi Della Rocca, L. Roversi. - Berlin : Springer, 2001. - ISBN 9783540426721. - pp. 123-135 (( Intervento presentato al 7. convegno Italian Conference on Theoretical Computer Science tenutosi a Torino nel 2001 [10.1007/3-540-45446-2_8].

Upper bounds on the size of one-way quantum finite automata

C. Mereghetti
Primo
;
B. Palano
Ultimo
2001

Abstract

We show that, for any stochastic event p of period n, there exists a measure-once one-way quantum finite automaton (1qfa) with at most 2 √ 6n + 25 states inducing the event ap + b, for constants a > 0, b≥ 0, satisfying a+b ≤1. This fact is proved by designing an algorithm which constructs the desired 1qfa in polynomial time. As a consequence, we get that any periodic language of period n can be accepted with isolated cut point by a 1qfa with no more than 2 √ 6n+26 states. Our results give added evidence of the strength of measure-once 1qfa’s with respect to classical automata.
Periodic events and languages; Quantum finite automata
Settore INF/01 - Informatica
2001
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
pubblicato.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 245.97 kB
Formato Adobe PDF
245.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/175727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact