Web queries, credit card transactions, and medical records are examples of transaction data flowing in corporate data stores, and often revealing associations between individuals and sensitive information. The serial release of these data to partner institutions or data analysis centers in a nonaggregated form is a common situation. In this paper, we show that correlations among sensitive values associated to the same individuals in different releases can be easily used to violate users' privacy by adversaries observing multiple data releases, even if state-of-the-art privacy protection techniques are applied. We show how the above sequential background knowledge can be actually obtained by an adversary, and used to identify with high confidence the sensitive values of an individual. Our proposed defense algorithm is based on Jensen-Shannon divergence; experiments show its superiority with respect to other applicable solutions. To the best of our knowledge, this is the first work that systematically investigates the role of sequential background knowledge in serial release of transaction data.

JS-reduce : defending your data from sequential background knowledge attacks / D. Riboni, L. Pareschi, C. Bettini. - In: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING. - ISSN 1545-5971. - 9:3(2012 May), pp. 6143954.387-6143954.400.

JS-reduce : defending your data from sequential background knowledge attacks

D. Riboni
Primo
;
C. Bettini
Ultimo
2012

Abstract

Web queries, credit card transactions, and medical records are examples of transaction data flowing in corporate data stores, and often revealing associations between individuals and sensitive information. The serial release of these data to partner institutions or data analysis centers in a nonaggregated form is a common situation. In this paper, we show that correlations among sensitive values associated to the same individuals in different releases can be easily used to violate users' privacy by adversaries observing multiple data releases, even if state-of-the-art privacy protection techniques are applied. We show how the above sequential background knowledge can be actually obtained by an adversary, and used to identify with high confidence the sensitive values of an individual. Our proposed defense algorithm is based on Jensen-Shannon divergence; experiments show its superiority with respect to other applicable solutions. To the best of our knowledge, this is the first work that systematically investigates the role of sequential background knowledge in serial release of transaction data.
anonymity; Privacy-preserving release of transaction data; sequential background knowledge
Settore INF/01 - Informatica
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/175530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact