Glioblastoma multiforme (GBM) is the most malignant human primary brain tumor, and its infiltrative nature represents the leading cause for the failure of therapies and tumor recurrences. It is therefore crucial the knowledge of the molecular mechanisms underlying GBM invasion to identify novel therapeutic targets to limit motility. In this study, we evaluated the role of Epidermal growth factor receptor Pathway Substrate 8 (Eps8), a crucial regulator of the actin cytoskeleton dynamics accompanying cell motility and invasion, in GBM migration and invasiveness. We found that silencing of the protein by small interfering RNAs (siRNAs) abrogated the migratory and invasive capacity of three different human GBM cell lines both in 2-dimensional (2-D) and 3-dimensional (3-D) in vitro assays. The inhibitory effect on invasion was maintained independently by the migration mode utilized by the cells in our 3-D model, and was accompanied by an impaired formation of actin-based cytoskeletal protrusive structures. Our data propose Eps8 as a key molecule involved in the control of the intrinsic invasive behavior of GBM cells, and suggest that this protein might represent a useful target for the design of new drugs for the treatment of these tumors.

Silencing of Eps8 blocks migration and invasion in human glioblastoma cell lines / M.G. Cattaneo, E. Cappellini, L.M. Vicentini. - In: EXPERIMENTAL CELL RESEARCH. - ISSN 0014-4827. - 318:15(2012 Sep 10), pp. 1901-1912. [10.1016/j.yexcr.2012.05.010]

Silencing of Eps8 blocks migration and invasion in human glioblastoma cell lines

M.G. Cattaneo
Primo
;
E. Cappellini
Secondo
;
L.M. Vicentini
2012

Abstract

Glioblastoma multiforme (GBM) is the most malignant human primary brain tumor, and its infiltrative nature represents the leading cause for the failure of therapies and tumor recurrences. It is therefore crucial the knowledge of the molecular mechanisms underlying GBM invasion to identify novel therapeutic targets to limit motility. In this study, we evaluated the role of Epidermal growth factor receptor Pathway Substrate 8 (Eps8), a crucial regulator of the actin cytoskeleton dynamics accompanying cell motility and invasion, in GBM migration and invasiveness. We found that silencing of the protein by small interfering RNAs (siRNAs) abrogated the migratory and invasive capacity of three different human GBM cell lines both in 2-dimensional (2-D) and 3-dimensional (3-D) in vitro assays. The inhibitory effect on invasion was maintained independently by the migration mode utilized by the cells in our 3-D model, and was accompanied by an impaired formation of actin-based cytoskeletal protrusive structures. Our data propose Eps8 as a key molecule involved in the control of the intrinsic invasive behavior of GBM cells, and suggest that this protein might represent a useful target for the design of new drugs for the treatment of these tumors.
Glioblastoma; Eps8; Invasion; Ameboidal; Mesenchymal; Actin cytoskeleton
Settore BIO/14 - Farmacologia
10-set-2012
Article (author)
File in questo prodotto:
File Dimensione Formato  
34_eps8.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/175151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact