It is becoming increasingly clear that the effects of the opioids and their synthetic analogs on anterior pituitary function largely depend on the steroid milieu present in the animal at time of drug administration. However, it is still unclear whether gonadal steroids regulate the opioid-modulated mechanisms by affecting the number of opiate receptors in the brain. To further investigate these issues, the effects of opiate agonists and antagonists on LH, FSH and prolactin (Prl) secretion have been studied in: (a) normal and castrated male rats, and (b) normally cycling female rats. The binding characteristics of the brain subclass of mu opiate receptors have been analyzed in the same group of experimental animals; this type of receptors seems to be particularly involved in the control of gonadotropin and Prl release. When injected intraventricularly into normal male rats, morphine (200 micrograms/rat) induced in a significant elevation of serum LH levels at 10 and 20 min. In long-term castrated animals the administration of the drug significantly reduced LH secretion at 40 and 60 min after the injection, the inhibition lasted up to 180 min. Morphine, when given intraventricularly to normal males, induced a conspicuous and significant elevation of serum Prl levels at 10, 20, 40 and 60 min after treatment. However, when the drug was administered to castrated rats, it did not significantly affect Prl release at any time interval considered. Morphine intraventricular injections did not modify serum FSH levels either in normal or in castrated male rats. The concentration of mu opiate receptors was found to be similar when measured in the whole brain of normal and orchidectomized rats. In adult cycling female rats, s.c. injections of naloxone (2.5 mg/kg) stimulated LH release in every phase of the estrous cycle; the magnitude of the responses was highly variable, being particularly elevated at 16.00 h of the day of proestrous and at 10.00, 12.00 and 14.00 h of the day of estrous. Conversely, LH response to naloxone was totally obliterated at 18.00 and 20.00 h of the day of proestrous, when the preovulatory LH surge was found to occur. The concentration of brain opiate receptors of the mu type showed significant variations during the different phases of the estrous cycle, with higher levels at 12.00 h of the day of proestrous and at 18.00 h of the day of estrous.(ABSTRACT TRUNCATED AT 400 WORDS)

Gonadal steroid modulation of brain opioid systems / P. Limonta, R. Maggi, D. Dondi, L. Martini, F. Piva. - In: JOURNAL OF STEROID BIOCHEMISTRY. - ISSN 0022-4731. - 27:4-6(1987), pp. 691-698. ((Intervento presentato al 7. convegno International Congress on Hormonal Steroids tenutosi a Madrid nel 1986.

Gonadal steroid modulation of brain opioid systems

P. Limonta
Primo
;
R. Maggi
Secondo
;
D. Dondi;L. Martini
Penultimo
;
F. Piva
Ultimo
1987

Abstract

It is becoming increasingly clear that the effects of the opioids and their synthetic analogs on anterior pituitary function largely depend on the steroid milieu present in the animal at time of drug administration. However, it is still unclear whether gonadal steroids regulate the opioid-modulated mechanisms by affecting the number of opiate receptors in the brain. To further investigate these issues, the effects of opiate agonists and antagonists on LH, FSH and prolactin (Prl) secretion have been studied in: (a) normal and castrated male rats, and (b) normally cycling female rats. The binding characteristics of the brain subclass of mu opiate receptors have been analyzed in the same group of experimental animals; this type of receptors seems to be particularly involved in the control of gonadotropin and Prl release. When injected intraventricularly into normal male rats, morphine (200 micrograms/rat) induced in a significant elevation of serum LH levels at 10 and 20 min. In long-term castrated animals the administration of the drug significantly reduced LH secretion at 40 and 60 min after the injection, the inhibition lasted up to 180 min. Morphine, when given intraventricularly to normal males, induced a conspicuous and significant elevation of serum Prl levels at 10, 20, 40 and 60 min after treatment. However, when the drug was administered to castrated rats, it did not significantly affect Prl release at any time interval considered. Morphine intraventricular injections did not modify serum FSH levels either in normal or in castrated male rats. The concentration of mu opiate receptors was found to be similar when measured in the whole brain of normal and orchidectomized rats. In adult cycling female rats, s.c. injections of naloxone (2.5 mg/kg) stimulated LH release in every phase of the estrous cycle; the magnitude of the responses was highly variable, being particularly elevated at 16.00 h of the day of proestrous and at 10.00, 12.00 and 14.00 h of the day of estrous. Conversely, LH response to naloxone was totally obliterated at 18.00 and 20.00 h of the day of proestrous, when the preovulatory LH surge was found to occur. The concentration of brain opiate receptors of the mu type showed significant variations during the different phases of the estrous cycle, with higher levels at 12.00 h of the day of proestrous and at 18.00 h of the day of estrous.(ABSTRACT TRUNCATED AT 400 WORDS)
Animals ; Morphine ; Luteinizing Hormone ; Receptors, Opioid, mu ; Brain ; Gonadal Steroid Hormones ; Endorphins ; Follicle Stimulating Hormone; Naloxone ; Orchiectomy ; Rats ; Prolactin ; Estrus ; Receptors, Opioid ; Female ; Male
Settore BIO/09 - Fisiologia
Settore BIO/13 - Biologia Applicata
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/175132
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 28
social impact