Longevity phenotype in humans results from the influence of environmental and genetic factors. Few gene polymorphisms have been identified so far with a modest effect on lifespan leaving room for the search of other players in the longevity game. It has been recently demonstrated that targeted disruption of the mouse homolog of the human angiotensin II type 1 receptor (AT(1)R) gene (AGTR1) translates into marked prolongation of animal lifespan (Benigni et al., J Clin Invest 119(3):524-530, 2009). Based on the above study in mice, here we sought to search for AGTR1 variations associated to reduced AT(1) receptor protein levels and to prolonged lifespan in humans. AGTR1 was sequenced in 173 Italian centenarians and 376 younger controls. A novel non-synonymous mutation was detected in a centenarian. Two polymorphisms in AGTR1 promoter, rs422858 and rs275653, in complete linkage disequilibrium, were significantly associated with the ability to attain extreme old age. We then replicated the study of rs275653 in a large independent cohort of Japanese origin (598 centenarians and semi-supercentenarians, 422 younger controls) and indeed confirmed its association with exceptional old age. In combined analyses, rs275653 was associated to extreme longevity either at recessive model (P = 0.007, odds ratio (OR) 3.57) or at genotype level (P = 0.015). Significance was maintained after correcting for confounding factors. Fluorescence activated cell sorting analysis revealed that subjects homozygous for the minor allele of rs275653 had less AT(1)R-positive peripheral blood polymorphonuclear cells. Moreover, rs275653 was associated to lower blood pressure in centenarians. These findings highlight the role of AGTR1 as a possible candidate among longevity-enabling genes

Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity / A. Benigni, S. Orisio, M. Noris, P. Iatropoulos, D. Castaldi, K. Kamide, H. Rakugi, Y. Arai, M. Todeschini, G. Ogliari, E. Imai, Y. Gondo, N. Hirose, D. Mari, G. Remuzzi. - In: AGE. - ISSN 1574-4647. - 35:3(2013 Jun), pp. 993-1005. [10.1007/s11357-012-9408-8]

Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity

G. Ogliari;D. Mari
Penultimo
;
G. Remuzzi
Ultimo
2013

Abstract

Longevity phenotype in humans results from the influence of environmental and genetic factors. Few gene polymorphisms have been identified so far with a modest effect on lifespan leaving room for the search of other players in the longevity game. It has been recently demonstrated that targeted disruption of the mouse homolog of the human angiotensin II type 1 receptor (AT(1)R) gene (AGTR1) translates into marked prolongation of animal lifespan (Benigni et al., J Clin Invest 119(3):524-530, 2009). Based on the above study in mice, here we sought to search for AGTR1 variations associated to reduced AT(1) receptor protein levels and to prolonged lifespan in humans. AGTR1 was sequenced in 173 Italian centenarians and 376 younger controls. A novel non-synonymous mutation was detected in a centenarian. Two polymorphisms in AGTR1 promoter, rs422858 and rs275653, in complete linkage disequilibrium, were significantly associated with the ability to attain extreme old age. We then replicated the study of rs275653 in a large independent cohort of Japanese origin (598 centenarians and semi-supercentenarians, 422 younger controls) and indeed confirmed its association with exceptional old age. In combined analyses, rs275653 was associated to extreme longevity either at recessive model (P = 0.007, odds ratio (OR) 3.57) or at genotype level (P = 0.015). Significance was maintained after correcting for confounding factors. Fluorescence activated cell sorting analysis revealed that subjects homozygous for the minor allele of rs275653 had less AT(1)R-positive peripheral blood polymorphonuclear cells. Moreover, rs275653 was associated to lower blood pressure in centenarians. These findings highlight the role of AGTR1 as a possible candidate among longevity-enabling genes
Angiotensin II type I receptor; Genetic polymorphism; Centenarians; Human longevity;
Settore MED/09 - Medicina Interna
giu-2013
9-mag-2012
AGE
Article (author)
File in questo prodotto:
File Dimensione Formato  
Variations of the angiotesin.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 427.89 kB
Formato Adobe PDF
427.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/174131
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 32
social impact