Golgi - impregnated neurons of the human or animal central nervous system were studied with a confocal laser scanning microscope (CLSM). The scanning properties (optical sectioning of the specimen) offered by the CLSM and the capacity of metal granules to reflect the laser beam allow a three-dimensional reconstruction of the impregnated neurons. The volume scanned can be depicted in three different ways: (a) extended focus, i.e., a bidimensional image that contains information from all the optical sections, as if there were an extensive depth of focus; (b) a topographic representation in which the intensity of every pixel is proportional to the calculated z value (as a result, the closer the object section is to the surface, the greater the color intensity becomes); and (c) shadow representation, i.e., a pseudo-three-dimensional image. In addition, a true and complete three-dimensional reconstruction of neurons can be obtained using an extended RAM and quick elaboration (fast CPU) combined with the rotation of the reconstructed image in the different planes. High-magnification, high-numerical-aperture (NA) oil immersion objective lenses with reduced working distance may present some problems in the three-dimensional reconstruction of large neurons with extensive and spreading dendritic branches. This limitation may be overcome by using a low-magnification (10 X) oil immersion lens.

Real complete three-dimensional reconstruction of Golgi impregnated neurons by means of a confocal laser scanning microscope / G. Tredici, A. Di Francesco, A. Miani, G. Pizzini. - In: NEUROIMAGE. - ISSN 1053-8119. - 1:2(1993), pp. 87-93. [10.1006/nimg.1993.1002]

Real complete three-dimensional reconstruction of Golgi impregnated neurons by means of a confocal laser scanning microscope

A. Miani
Penultimo
;
G. Pizzini
Ultimo
1993

Abstract

Golgi - impregnated neurons of the human or animal central nervous system were studied with a confocal laser scanning microscope (CLSM). The scanning properties (optical sectioning of the specimen) offered by the CLSM and the capacity of metal granules to reflect the laser beam allow a three-dimensional reconstruction of the impregnated neurons. The volume scanned can be depicted in three different ways: (a) extended focus, i.e., a bidimensional image that contains information from all the optical sections, as if there were an extensive depth of focus; (b) a topographic representation in which the intensity of every pixel is proportional to the calculated z value (as a result, the closer the object section is to the surface, the greater the color intensity becomes); and (c) shadow representation, i.e., a pseudo-three-dimensional image. In addition, a true and complete three-dimensional reconstruction of neurons can be obtained using an extended RAM and quick elaboration (fast CPU) combined with the rotation of the reconstructed image in the different planes. High-magnification, high-numerical-aperture (NA) oil immersion objective lenses with reduced working distance may present some problems in the three-dimensional reconstruction of large neurons with extensive and spreading dendritic branches. This limitation may be overcome by using a low-magnification (10 X) oil immersion lens.
Settore BIO/16 - Anatomia Umana
1993
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/173336
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact