Nowadays the amount of content and products easily available on-line for purchase or fruition is so high that recommender systems represent an important resource for users in order to get suggestions about items (songs, movies, books, news, products in general...) they might like. For many years, research, in the field of recommender systems focused on improving accuracy, i.e. improving the precision with which the systems predict the rate that a given user would give to a given item. In the last years, an increasing number of efforts have been directed towards other important aspects such as novelty, diversity and serendipity of recommendations. In particular, with serendipity, in this context, we refer to the ability of a recommender system to propose unexpected and liked recommendations. Serendipity is likely the aspect which has received the least attention and it is the one, in this work, we focus more on. The aim of this thesis is to propose techniques which can be adopted by recommender system designers in order to increase serendipity while keeping an acceptable level of precision of the recommendations. We work in the domain of music, which presents a particularly suitable context for trying to propose non-obvious recommendations, mainly due to the lower cost, respect to other domains, of “bad” recommendations (listening to a song a user dislikes is not much time consuming). The work proposes a collaborative-filtering method to classify artists, based on the Affinity Propagation clustering algorithm and on listening logs as data source. The classification, together with a list of the artists a user likes, is used to detect which musical clusters (called “musical worlds”) the user is not familiar with. A technique to synthetically represent each cluster, based on freely chosen keywords (folksonomy), is also presented. A novel recommendation method based on gradual exposure and on a variation of the user-based collaborative filtering approach is proposed. The said method exploits the knowledge of the most eclectic users (we decided to call them “mentors”) to choose, from the unfamiliar musical clusters, the ones which are more likely to contain serendipitous music for the active user. Once a target musical cluster has been chosen, a playlist is created, which starts with songs by artists who tend to be borderline in respect to the user's taste and continues with songs by artists who tend to be, gradually, closer to the most representative artist of the target cluster. A real music recommendation radio has been developed, implementing the techniques proposed and a traditional top-10 item-based recommender. The radio has been used as a validation test, considering the traditional recommender as a baseline to define which recommendations were expected and which ones were unexpected. The test session suggested that the proposed approach overcomes a method which relies on randomness in terms of a novel measure, called “serendipity cost” (measured as the total number of disliked songs over total number of serendipitous songs) and in term of cohesion, maintaining a “total cost” (measured as the total number of disliked songs over total number of liked songs, which can be considered an index of precision) which is much lower than the cost related to the random approach and closer to the cost of a traditional item-based recommender systems (1.03 for the method proposed, 0.46 for the traditional recommender, 2.77 for the random). The method we proposed in order to choose and order the intermediate artists in a playlist, based on graph search techniques, is used to gradually expose the user to the target musical world, following the intuition that showing a connection between the target musical world and the music the user is closer to can help him to accept the (unexpected) recommendation. This method, however, can itself be considered an achievement of this work and applied not only in this context but anytime the automatic production of a playlist, having in input the first artist, the last artist and a cohesion (distance in a playlist between an artist and the following one *) constraint, is needed. * Note that cohesion in literature is usually defined as the average distance in a playlist between a song and the following one so in this sentence the term is used in a broader sense.

SERENDIPITOUS MENTORSHIP IN MUSIC RECOMMENDER SYSTEMS / E. Tacchini ; tutor: E. Damiani ; supervisore: E. Damiani. Universita' degli Studi di Milano, 2012 Mar 06. 23. ciclo, Anno Accademico 2010. [10.13130/tacchini-eugenio_phd2012-03-06].

SERENDIPITOUS MENTORSHIP IN MUSIC RECOMMENDER SYSTEMS

E. Tacchini
2012

Abstract

Nowadays the amount of content and products easily available on-line for purchase or fruition is so high that recommender systems represent an important resource for users in order to get suggestions about items (songs, movies, books, news, products in general...) they might like. For many years, research, in the field of recommender systems focused on improving accuracy, i.e. improving the precision with which the systems predict the rate that a given user would give to a given item. In the last years, an increasing number of efforts have been directed towards other important aspects such as novelty, diversity and serendipity of recommendations. In particular, with serendipity, in this context, we refer to the ability of a recommender system to propose unexpected and liked recommendations. Serendipity is likely the aspect which has received the least attention and it is the one, in this work, we focus more on. The aim of this thesis is to propose techniques which can be adopted by recommender system designers in order to increase serendipity while keeping an acceptable level of precision of the recommendations. We work in the domain of music, which presents a particularly suitable context for trying to propose non-obvious recommendations, mainly due to the lower cost, respect to other domains, of “bad” recommendations (listening to a song a user dislikes is not much time consuming). The work proposes a collaborative-filtering method to classify artists, based on the Affinity Propagation clustering algorithm and on listening logs as data source. The classification, together with a list of the artists a user likes, is used to detect which musical clusters (called “musical worlds”) the user is not familiar with. A technique to synthetically represent each cluster, based on freely chosen keywords (folksonomy), is also presented. A novel recommendation method based on gradual exposure and on a variation of the user-based collaborative filtering approach is proposed. The said method exploits the knowledge of the most eclectic users (we decided to call them “mentors”) to choose, from the unfamiliar musical clusters, the ones which are more likely to contain serendipitous music for the active user. Once a target musical cluster has been chosen, a playlist is created, which starts with songs by artists who tend to be borderline in respect to the user's taste and continues with songs by artists who tend to be, gradually, closer to the most representative artist of the target cluster. A real music recommendation radio has been developed, implementing the techniques proposed and a traditional top-10 item-based recommender. The radio has been used as a validation test, considering the traditional recommender as a baseline to define which recommendations were expected and which ones were unexpected. The test session suggested that the proposed approach overcomes a method which relies on randomness in terms of a novel measure, called “serendipity cost” (measured as the total number of disliked songs over total number of serendipitous songs) and in term of cohesion, maintaining a “total cost” (measured as the total number of disliked songs over total number of liked songs, which can be considered an index of precision) which is much lower than the cost related to the random approach and closer to the cost of a traditional item-based recommender systems (1.03 for the method proposed, 0.46 for the traditional recommender, 2.77 for the random). The method we proposed in order to choose and order the intermediate artists in a playlist, based on graph search techniques, is used to gradually expose the user to the target musical world, following the intuition that showing a connection between the target musical world and the music the user is closer to can help him to accept the (unexpected) recommendation. This method, however, can itself be considered an achievement of this work and applied not only in this context but anytime the automatic production of a playlist, having in input the first artist, the last artist and a cohesion (distance in a playlist between an artist and the following one *) constraint, is needed. * Note that cohesion in literature is usually defined as the average distance in a playlist between a song and the following one so in this sentence the term is used in a broader sense.
6-mar-2012
Settore INF/01 - Informatica
recommender systems ; music ; classification ; clustering ; serendipity ; similarities
DAMIANI, ERNESTO
DAMIANI, ERNESTO
Doctoral Thesis
SERENDIPITOUS MENTORSHIP IN MUSIC RECOMMENDER SYSTEMS / E. Tacchini ; tutor: E. Damiani ; supervisore: E. Damiani. Universita' degli Studi di Milano, 2012 Mar 06. 23. ciclo, Anno Accademico 2010. [10.13130/tacchini-eugenio_phd2012-03-06].
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R07649.pdf

Open Access dal 06/08/2014

Tipologia: Tesi di dottorato completa
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/172443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact