Given a square matrix T of order n, with non negative entries t_ij, the cardinality constrained SSTDMA problem asks for a decomposition of T into a set S={T1,T2,...,Tk} of Latin matrices such that at most L < n elements are present in each matrix of S and the summation of the largest elements in each matrix is minimized. We present some new results on solving the problem via column generation techniques. Computational experiments compare the performances of the proposed approach with those contained in the work [1]. References [1] M.Dell'Amico, F.Maffioli, M.Trubian, New Bounds for Optimum Traffic Assignment in Satellite Communication, Computers Ops. Res., Vol.25, 9, 729-743 (1998)

On the cardinality constrained SSTDMA problem / F. Colombo, M. Trubian. ((Intervento presentato al 38. convegno Conferenza annuale AIRO tenutosi a Genova nel 2007.

On the cardinality constrained SSTDMA problem

M. Trubian
Ultimo
2007

Abstract

Given a square matrix T of order n, with non negative entries t_ij, the cardinality constrained SSTDMA problem asks for a decomposition of T into a set S={T1,T2,...,Tk} of Latin matrices such that at most L < n elements are present in each matrix of S and the summation of the largest elements in each matrix is minimized. We present some new results on solving the problem via column generation techniques. Computational experiments compare the performances of the proposed approach with those contained in the work [1]. References [1] M.Dell'Amico, F.Maffioli, M.Trubian, New Bounds for Optimum Traffic Assignment in Satellite Communication, Computers Ops. Res., Vol.25, 9, 729-743 (1998)
set-2007
Column generation ; matrix decomposition ; branch and price
Settore MAT/09 - Ricerca Operativa
Associazione Italiana Ricerca Operativa
On the cardinality constrained SSTDMA problem / F. Colombo, M. Trubian. ((Intervento presentato al 38. convegno Conferenza annuale AIRO tenutosi a Genova nel 2007.
Conference Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/172272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact