David and Yacoub sparing techniques are the most common procedures adopted for the surgical correction of aortic root aneurysms. These surgical procedures entail the replacement of the sinuses of Valsalva with a synthetic graft, inside which the cusps are re-suspended. Root replacement by a synthetic graft may result in altered valve behaviour both in terms of coaptation and stress distribution, thus leading to the failure of the correction. A finite element approach was used to investigate this phenomenon; four 3D models of the aortic root were developed to simulate the root in physiological, pathological and post-operative conditions after the two different surgical procedures. The physiological 3D geometrical model was developed on the basis of anatomical data obtained from echocardiographic images; it was then modified to obtain the pathological and post-operative models. The effectiveness of both techniques was assessed by comparison with the first two simulated conditions, in terms of stresses acting on the root, leaflet coaptation and interaction between leaflets and the graft during valve opening. Results show that both sparing techniques are able to restore aortic valve coaptation and to reduce stresses induced by the initial root dilation. Nonetheless, both techniques lead to altered leaflet kinematics, with more evident alterations after David repair.

Aortic root performance after valve sparing procedure : a comparative finite element analysis / M. Soncini, E. Votta, S. Zinicchino, V. Burrone, A. Mangini, M. Lemma, C. Antona, A. Redaelli. - In: MEDICAL ENGINEERING & PHYSICS. - ISSN 1350-4533. - 31:2(2009 Mar), pp. 234-243.

Aortic root performance after valve sparing procedure : a comparative finite element analysis

C. Antona;
2009

Abstract

David and Yacoub sparing techniques are the most common procedures adopted for the surgical correction of aortic root aneurysms. These surgical procedures entail the replacement of the sinuses of Valsalva with a synthetic graft, inside which the cusps are re-suspended. Root replacement by a synthetic graft may result in altered valve behaviour both in terms of coaptation and stress distribution, thus leading to the failure of the correction. A finite element approach was used to investigate this phenomenon; four 3D models of the aortic root were developed to simulate the root in physiological, pathological and post-operative conditions after the two different surgical procedures. The physiological 3D geometrical model was developed on the basis of anatomical data obtained from echocardiographic images; it was then modified to obtain the pathological and post-operative models. The effectiveness of both techniques was assessed by comparison with the first two simulated conditions, in terms of stresses acting on the root, leaflet coaptation and interaction between leaflets and the graft during valve opening. Results show that both sparing techniques are able to restore aortic valve coaptation and to reduce stresses induced by the initial root dilation. Nonetheless, both techniques lead to altered leaflet kinematics, with more evident alterations after David repair.
aortic root; sparing operation; finite element analysis
Settore MED/23 - Chirurgia Cardiaca
Settore ING-IND/34 - Bioingegneria Industriale
mar-2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1350453308001288-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/172201
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact