The performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. Active coolers were chosen to minimize straylight on the detectors and to maximize lifetime. The scientific requirement for very broad frequency led to two detector technologies with widely different temperature and cooling needs. This made use of a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, SPITZER, AKARI), infeasible. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (\lt20K), a 4He Joule-Thomson cooler (4.7K), and a 3He-4He dilution cooler (1.4K and 0.1K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The bolometer plate of the High Frequency Instrument reached 93mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, and operates at a mean temperature of 384K. At the other end of the spacecraft, the telescope baffle operates at 42.3K and the telescope primary mirror operates at 35.9K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data.

Planck early results. II. The thermal performance of Planck / P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, M. Baker, A. Balbi, A. J. Banday, R. B. Barreiro, E. Battaner, K. Benabed, A. Benoît, J. -P. Bernard, M. R. F. Bersanelli, P. Bhandari, R. Bhatia, J. J. Bock, A. Bonaldi, J. R. Bond, J. Borders, J. Borrill, F. R. Bouchet, B. Bowman, T. Bradshaw, E. Bréelle, M. Bucher, C. Burigana, R. C. Butler, P. Cabella, P. Camus, C. M. Cantalupo, B. Cappellini, J. -F. Cardoso, A. Catalano, L. Cayón, A. Challinor, A. Chamballu, J. P. Chambelland, J. Charra, M. Charra, L. -Y. Chiang, C. Chiang, P. R. Christensen, D. L. Clements, B. Collaudin, S. Colombi, F. Couchot, A. Coulais, B. P. Crill, M. Crook, F. Cuttaia, C. Damasio, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, G. de Gasperis, A. de Rosa, J. Delabrouille, J. -M. Delouis, F. -X. Désert, K. Dolag, S. Donzelli, O. Doré, U. Dörl, M. Douspis, X. Dupac, G. Efstathiou, T. A. Enßlin, H. K. Eriksen, C. Filliard, F. Finelli, S. Foley, O. Forni, P. Fosalba, J. -J. Fourmond, M. Frailis, E. Franceschi, S. Galeotta, K. Ganga, E. Gavila, M. Giard, G. Giardino, Y. Giraud-Héraud, J. González-Nuevo, K. M. Górski, S. Gratton, A. Gregorio, A. Gruppuso, G. Guyot, D. Harrison, G. Helou, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest, R. J. Hoyland, K. M. Huffenberger, U. Israelsson, A. H. Jaffe, W. C. Jones, M. Juvela, E. Keihänen, R. Keskitalo, T. S. Kisner, R. Kneissl, L. Knox, H. Kurki-Suonio, G. Lagache, J. -M. Lamarre, P. Lami, A. Lasenby, R. J. Laureijs, A. Lavabre, C. R. Lawrence, S. Leach, R. Lee, R. Leonardi, C. Leroy, P. B. Lilje, M. López-Caniego, P. M. Lubin, J. F. Macías-Pérez, T. Maciaszek, C. J. MacTavish, B. Maffei, D. Maino, N. Mandolesi, R. Mann, M. Maris, E. Martínez-González, S. Masi, S. Matarrese, F. Matthai, P. Mazzotta, P. McGehee, P. R. Meinhold, A. Melchiorri, F. Melot, L. Mendes, A. Mennella, M. -A. Miville-Deschênes, A. Moneti, L. Montier, J. Mora, G. Morgante, N. Morisset, D. Mortlock, D. Munshi, A. Murphy, P. Naselsky, A. Nash, P. Natoli, C. B. Netterfield, D. Novikov, I. Novikov, I. J. O’Dwyer, S. Osborne, F. Pajot, F. Pasian, G. Patanchon, D. Pearson, O. Perdereau, L. Perotto, F. Perrotta, F. Piacentini, M. Piat, S. Plaszczynski, P. Platania, E. Pointecouteau, G. Polenta, N. Ponthieu, T. Poutanen, G. Prézeau, M. Prina, S. Prunet, J. -L. Puget, J. P. Rachen, R. Rebolo, M. Reinecke, C. Renault, S. Ricciardi, T. Riller, I. Ristorcelli, G. Rocha, C. Rosset, J. A. Rubiño-Martín, B. Rusholme, M. Sandri, D. Santos, G. Savini, B. M. Schaefer, D. Scott, M. D. Seiffert, P. Shellard, G. F. Smoot, J. -L. Starck, P. Stassi, F. Stivoli, V. Stolyarov, R. Stompor, R. Sudiwala, J. -F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, J. -P. Torre, M. Tristram, J. Tuovinen, L. Valenziano, L. Vibert, P. Vielva, F. Villa, N. Vittorio, L. A. Wade, B. D. Wandelt, C. Watson, S. D. M. White, A. Wilkinson, P. Wilson, D. Yvon, A. Zacchei, B. Zhang, A. Zonca. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 536:(2011), pp. A2.1-A2.31. [10.1051/0004-6361/201116486]

Planck early results. II. The thermal performance of Planck

M.R.F. Bersanelli;B. Cappellini;S. Donzelli;D. Maino;A. Mennella;P. Platania;M. Tomasi;A. Zonca
2011

Abstract

The performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. Active coolers were chosen to minimize straylight on the detectors and to maximize lifetime. The scientific requirement for very broad frequency led to two detector technologies with widely different temperature and cooling needs. This made use of a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, SPITZER, AKARI), infeasible. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (\lt20K), a 4He Joule-Thomson cooler (4.7K), and a 3He-4He dilution cooler (1.4K and 0.1K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The bolometer plate of the High Frequency Instrument reached 93mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, and operates at a mean temperature of 384K. At the other end of the spacecraft, the telescope baffle operates at 42.3K and the telescope primary mirror operates at 35.9K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data.
astrophysics ; instrumentation and methods for astrophysics
Settore FIS/05 - Astronomia e Astrofisica
2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
aa16486-11.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 7.05 MB
Formato Adobe PDF
7.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/171615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 94
social impact