Endothelial cells (ECs) differ in morphology and functional responses in the different regions of the vascular tree. During embryo development they acquire organ specific characteristics to respond to the needs of the perfused organs. The brain microvasculature is a striking example of this process. This particular vasculature develops unique properties to assure a tight control of permeability between blood and the underlying nervous system. To this end, these cells present well developed cell to cell junctions, tight basement membrane and express a series of transporters which support the passage of nutrients and toxic agents inside or outside the brain, respectively. This highly differentiated EC phenotype is induced and maintained by the cross-talk with the surrounding cells such as pericytes and astrocytes. Recent evidence highlights the molecular basis of this cross-talk (constituting the neurovascular unit) and opens new perspectives in the development of drugs which modulate blood-brain-barrier (BBB) permeability properties. In this review we describe the specific features of the BBB and we discuss recent data on the role of Wnt as a mediator of brain angiogenesis and BBB differentiation

The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery? / R. Paolinelli, M. Corada, F. Orsenigo, E. Dejana. - In: PHARMACOLOGICAL RESEARCH. - ISSN 1043-6618. - 63:3(2011), pp. 165-171. [10.1016/j.phrs.2010.11.012]

The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery?

E. Dejana
Ultimo
2011

Abstract

Endothelial cells (ECs) differ in morphology and functional responses in the different regions of the vascular tree. During embryo development they acquire organ specific characteristics to respond to the needs of the perfused organs. The brain microvasculature is a striking example of this process. This particular vasculature develops unique properties to assure a tight control of permeability between blood and the underlying nervous system. To this end, these cells present well developed cell to cell junctions, tight basement membrane and express a series of transporters which support the passage of nutrients and toxic agents inside or outside the brain, respectively. This highly differentiated EC phenotype is induced and maintained by the cross-talk with the surrounding cells such as pericytes and astrocytes. Recent evidence highlights the molecular basis of this cross-talk (constituting the neurovascular unit) and opens new perspectives in the development of drugs which modulate blood-brain-barrier (BBB) permeability properties. In this review we describe the specific features of the BBB and we discuss recent data on the role of Wnt as a mediator of brain angiogenesis and BBB differentiation
Blood-brain-barrier ; Neurovascular unit ; Endothelial cells ; Wnt ; Tight junctions ; Permeability ; Drug delivery
Settore MED/04 - Patologia Generale
2011
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/171497
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 56
social impact