Let A be a Q-linear pseudo-Abelian rigid tensor category. A notion of finiteness due to Kimura and (independently) O'Sullivan guarantees that the ideal of numerically trivial endomorphism of an object is nilpotent. We generalize this result to special Schur-finite objects. In particular, in the category of Chow motives, if X is a smooth projective variety which satisfies the homological sign conjecture, then Kimura-finiteness, a special Schur-finiteness, and the nilpotency of CHninum(Xi×Xi) for all i (where n=dimX) are all equivalent.
Schur finiteness and nilpotency / A. Del Padrone, C. Mazza. - In: COMPTES RENDUS MATHÉMATIQUE. - ISSN 1631-073X. - 341:5(2005), pp. 283-286. [10.1016/j.crma.2005.07.010]
Schur finiteness and nilpotency
C. MazzaUltimo
2005
Abstract
Let A be a Q-linear pseudo-Abelian rigid tensor category. A notion of finiteness due to Kimura and (independently) O'Sullivan guarantees that the ideal of numerically trivial endomorphism of an object is nilpotent. We generalize this result to special Schur-finite objects. In particular, in the category of Chow motives, if X is a smooth projective variety which satisfies the homological sign conjecture, then Kimura-finiteness, a special Schur-finiteness, and the nilpotency of CHninum(Xi×Xi) for all i (where n=dimX) are all equivalent.| File | Dimensione | Formato | |
|---|---|---|---|
|
paper-arxiv.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
308.29 kB
Formato
Adobe PDF
|
308.29 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




