We prove that two derived equivalent twisted K3 surfaces have isomorphic periods. The converse is shown for K3 surfaces with large Picard number. It is also shown that all possible twisted derived equivalences between arbitrary twisted K3 surfaces form a subgroup of the group of all orthogonal transformations of the cohomology of a K3 surface. The passage from twisted derived equivalences to an action on the cohomology is made possible by twisted Chern characters that will be introduced for arbitrary smooth projective varieties.
Equivalences of twisted K3 surfaces / D. Huybrechts, P. Stellari. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 332:4(2005), pp. 901-936. [10.1007/s00208-005-0662-2]
Equivalences of twisted K3 surfaces
P. StellariUltimo
2005
Abstract
We prove that two derived equivalent twisted K3 surfaces have isomorphic periods. The converse is shown for K3 surfaces with large Picard number. It is also shown that all possible twisted derived equivalences between arbitrary twisted K3 surfaces form a subgroup of the group of all orthogonal transformations of the cohomology of a K3 surface. The passage from twisted derived equivalences to an action on the cohomology is made possible by twisted Chern characters that will be introduced for arbitrary smooth projective varieties.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.