Adams' inequality in its original form is nothing but the Trudinger-Moser inequality for Sobolev spaces involving higher order derivatives. In this Thesis we present Adams-type inequalities for unbounded domains in R^n and some applications to existence and multiplicity results for elliptic and biharmonic problems involving nonlinearities with exponential growth.

EXPONENTIAL-TYPE INEQUALITIES IN R^N AND APPLICATIONS TO ELLIPTIC AND BIHARMONIC EQUATIONS / F. Sani ; supervisore: B. Ruf ; coordinatore: M. Peloso. - : . Universita' degli Studi di Milano, 2012 Feb 20. ((24. ciclo, Anno Accademico 2011. [10.13130/sani-federica_phd2012-02-20].

EXPONENTIAL-TYPE INEQUALITIES IN R^N AND APPLICATIONS TO ELLIPTIC AND BIHARMONIC EQUATIONS

F. Sani
2012

Abstract

Adams' inequality in its original form is nothing but the Trudinger-Moser inequality for Sobolev spaces involving higher order derivatives. In this Thesis we present Adams-type inequalities for unbounded domains in R^n and some applications to existence and multiplicity results for elliptic and biharmonic problems involving nonlinearities with exponential growth.
RUF, BERNHARD
limiting Sobolev embeddings ; Trudinger-Moser inequalities ; inequality of D.R. Adams ; best constants ; elliptic equations ; ground state solutions ; biharmonic equations ; exponential growth ; variational methods
Settore MAT/05 - Analisi Matematica
EXPONENTIAL-TYPE INEQUALITIES IN R^N AND APPLICATIONS TO ELLIPTIC AND BIHARMONIC EQUATIONS / F. Sani ; supervisore: B. Ruf ; coordinatore: M. Peloso. - : . Universita' degli Studi di Milano, 2012 Feb 20. ((24. ciclo, Anno Accademico 2011. [10.13130/sani-federica_phd2012-02-20].
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R08023.pdf

accesso aperto

Tipologia: Tesi di dottorato completa
Dimensione 873.4 kB
Formato Adobe PDF
873.4 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/170626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact