The nematic phase of liquid crystals (LC), used in most LC display applications, is a fluid state formed by orientationally ordered molecules. The direction of their alignment, and hence the overall optical response of the material, is easily modified by the application of an electric field and elastically relaxes back to a well-defined off-state when the field is removed. It has been recently shown that hybrid materials formed by nematic LCs incorporated in complex micro-structured porous matrices are often capable of indefinitely retaining the alignment direction imposed by an electric field. Such multistability is ultimately due to the interactions of the porous material with the lines of topological defects that develop within the confined nematic. Controlling the defect lines and their interactions is crucial to the design of materials whose optical properties are electrically driven but spontaneously preserved.

The emergence of memory in liquid crystals / F. Serra, M. Buscaglia, T. Bellini. - In: MATERIALS TODAY. - ISSN 1369-7021. - 14:10(2011), pp. 488-494.

The emergence of memory in liquid crystals

F. Serra
Primo
;
M. Buscaglia
Secondo
;
T. Bellini
Ultimo
2011

Abstract

The nematic phase of liquid crystals (LC), used in most LC display applications, is a fluid state formed by orientationally ordered molecules. The direction of their alignment, and hence the overall optical response of the material, is easily modified by the application of an electric field and elastically relaxes back to a well-defined off-state when the field is removed. It has been recently shown that hybrid materials formed by nematic LCs incorporated in complex micro-structured porous matrices are often capable of indefinitely retaining the alignment direction imposed by an electric field. Such multistability is ultimately due to the interactions of the porous material with the lines of topological defects that develop within the confined nematic. Controlling the defect lines and their interactions is crucial to the design of materials whose optical properties are electrically driven but spontaneously preserved.
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore FIS/03 - Fisica della Materia
2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
2011 Materials Today.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/170330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact