Prion protein (PrP) amyloid formation is a central feature of genetic and acquired prion diseases such as Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. Themajor component of GSS amyloid is a PrP fragment spanning residues ∼82-146, which when synthesized as a peptide, readily forms fibrils featuring GSS amyloid. The present study employed surface plasmon resonance (SPR) to characterize the binding events underlying PrP82-146 oligomerization at the first stages of fibrillization, according to evidence suggesting a pathogenic role of prefibrillar oligomers rather than mature amyloid fibrils. We followed in real time the binding reactions occurring during short term (seconds) addition of PrP82-146 small oligomers (1-5-mers, flowing species) onto soluble prefibrillar PrP82-146 aggregates immobilized on the sensor surface. SPR data confirmed very efficient aggregation/elongation, consistent with the hypothesis of nucleation-dependent polymerization process. Much lower binding was observed when PrP82-146 flowed onto the scrambled sequence of PrP82-146 or onto prefibrillar Aβ42 aggregates. As previously found with Aβ40, SPR data could be adequately fitted by equations modeling the "dock-and-lock" mechanism, in which the "locking" step is due to sequential conformational changes, each increasing the affinity of the monomerfor the fibril until a condition of irreversible binding is reached. However, these conformational changes (i.e. the locking steps) appear to be faster and easier with PrP82-146 than with Aβ40. Such differences suggest that PrP82-146 has a greater propensity to polymerize and greater stability of the aggregates.
Gerstmann-Sträussler-Scheinker disease amyloid protein polymerizes according to the “dock-and-lock” model / M. Gobbi, L. Colombo, M. Morbin, G. Mazzoleni, E. Accardo, M. Vanoni, E. Del Favero, L.F. Cantù, D.A. Kirschner, C. Manzoni, M. Beeg, P. Ceci, P. Ubezio, G. Forloni, F. Tagliavini, M. Salmona. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 281:2(2006 Jan 13), pp. 843-849. [10.1074/jbc.M506164200]
Gerstmann-Sträussler-Scheinker disease amyloid protein polymerizes according to the “dock-and-lock” model
E. Del Favero;L.F. Cantù;
2006
Abstract
Prion protein (PrP) amyloid formation is a central feature of genetic and acquired prion diseases such as Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. Themajor component of GSS amyloid is a PrP fragment spanning residues ∼82-146, which when synthesized as a peptide, readily forms fibrils featuring GSS amyloid. The present study employed surface plasmon resonance (SPR) to characterize the binding events underlying PrP82-146 oligomerization at the first stages of fibrillization, according to evidence suggesting a pathogenic role of prefibrillar oligomers rather than mature amyloid fibrils. We followed in real time the binding reactions occurring during short term (seconds) addition of PrP82-146 small oligomers (1-5-mers, flowing species) onto soluble prefibrillar PrP82-146 aggregates immobilized on the sensor surface. SPR data confirmed very efficient aggregation/elongation, consistent with the hypothesis of nucleation-dependent polymerization process. Much lower binding was observed when PrP82-146 flowed onto the scrambled sequence of PrP82-146 or onto prefibrillar Aβ42 aggregates. As previously found with Aβ40, SPR data could be adequately fitted by equations modeling the "dock-and-lock" mechanism, in which the "locking" step is due to sequential conformational changes, each increasing the affinity of the monomerfor the fibril until a condition of irreversible binding is reached. However, these conformational changes (i.e. the locking steps) appear to be faster and easier with PrP82-146 than with Aβ40. Such differences suggest that PrP82-146 has a greater propensity to polymerize and greater stability of the aggregates.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.