The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century.

The twentieth century reanalysis project / G. P. Compo, J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. Gleason, R. S. Vose, G. Rutledge, P. Bessemoulin, S. Brönnimann, M. Brunet, R. I. Crouthamel, A. N. Grant, P. Y. Groisman, P. D. Jones, M. C. Kruk, A. C. Kruger, G. J. Marshall, M. Maugeri, H. Y. Mok, Ø. Nordli, T. F. Ross, R. M. Trigo, X. L. Wang, S. D. Woodruff, S. J. Worley. - In: QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY. - ISSN 0035-9009. - 137:654(2011), pp. 1-28.

The twentieth century reanalysis project

M. Maugeri;
2011

Abstract

The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century.
data assimilation ; Ensemble Kalman Filter ; state estimation ; surface pressure ; sea-level pressure
Settore FIS/06 - Fisica per il Sistema Terra e Il Mezzo Circumterrestre
2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
776_ftp.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/167622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2703
  • ???jsp.display-item.citation.isi??? 2619
social impact