Let $H$ be a real separable Hilbert space and $A:\mathcal{D}(A) \to H$ be a positive and self-adjoint (unbounded) operator, and denote by $A^\sigma$ its power of exponent $\sigma \in [-1,1)$. We consider the identification problem consisting in searching for a function $u:[0,T] \to H$ and a real constant $\mu$ that fulfill the initial-value problem $$ u' + Au = \mu \, A^\sigma u, \quad t \in (0,T), \quad u(0) = u_0, $$ and the additional condition $$ \alpha \|u(T)\|^{2} + \beta \int_{0}^{T}\|A^{1/2}u(\tau)\|^{2}d\tau = \rho, $$ where $u_{0} \in H$, $u_{0} \neq 0$ and $\alpha, \beta \geq 0$, $\alpha+\beta > 0$ and $\rho >0$ are given. By means of a finite-dimensional approximation scheme, we construct a unique solution $(u,\mu)$ of suitable regularity on the whole interval $[0,T]$, and exhibit an explicit continuous dependence estimate of Lipschitz-type with respect to the data $u_{0}$ and $\rho $. Also, we provide specific applications to second and fourth-order parabolic initial-boundary value problems.

Identification of a real constant in linear evolution equations in Hilbert spaces / A. Lorenzi, G. Mola. - In: INVERSE PROBLEMS AND IMAGING. - ISSN 1930-8337. - 5:3(2011 Aug), pp. 695-714. [10.3934/ipi.2011.5.695]

Identification of a real constant in linear evolution equations in Hilbert spaces

A. Lorenzi
Primo
;
G. Mola
Ultimo
2011

Abstract

Let $H$ be a real separable Hilbert space and $A:\mathcal{D}(A) \to H$ be a positive and self-adjoint (unbounded) operator, and denote by $A^\sigma$ its power of exponent $\sigma \in [-1,1)$. We consider the identification problem consisting in searching for a function $u:[0,T] \to H$ and a real constant $\mu$ that fulfill the initial-value problem $$ u' + Au = \mu \, A^\sigma u, \quad t \in (0,T), \quad u(0) = u_0, $$ and the additional condition $$ \alpha \|u(T)\|^{2} + \beta \int_{0}^{T}\|A^{1/2}u(\tau)\|^{2}d\tau = \rho, $$ where $u_{0} \in H$, $u_{0} \neq 0$ and $\alpha, \beta \geq 0$, $\alpha+\beta > 0$ and $\rho >0$ are given. By means of a finite-dimensional approximation scheme, we construct a unique solution $(u,\mu)$ of suitable regularity on the whole interval $[0,T]$, and exhibit an explicit continuous dependence estimate of Lipschitz-type with respect to the data $u_{0}$ and $\rho $. Also, we provide specific applications to second and fourth-order parabolic initial-boundary value problems.
Faedo-Galerkin approximation; Identification problems; Linear evolution equa- tions in Hilbert spaces; Linear parabolic equations; Unknown constants; Well-posedness results
Settore MAT/05 - Analisi Matematica
ago-2011
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/167437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact