We study Landau-Zener macroscopic quantum transitions in ferromagnetic metal nanoparticles containing on the order of 100 atoms. The model that we consider is described by an effective giant-spin Hamiltonian, with a coupling to a random transverse magnetic field mimicking the effect of quasiparticle excitations and structural disorder on the gap structure of the spin collective modes. We find different types of time evolutions depending on the interplay between the disorder in the transverse field and the initial conditions of the system. In the absence of disorder, if the system starts from a low-energy state, there is one main coherent quantum tunneling event where the initial-state amplitude is completely depleted in favor of a few discrete states, with nearby spin quantum numbers; when starting from the highest excited state, we observe complete inversion of the magnetization through a peculiar "backward cascade evolution." In the random case, the disorder-averaged transition probability for a low-energy initial state becomes a smooth distribution, which is nevertheless still sharply peaked around one of the transitions present in the disorder-free case. On the other hand, the coherent backward cascade phenomenon turns into a damped cascade with frustrated magnetic inversion.

Landau-Zener quantum tunneling in disordered nanomagnets / V.G.Benza,C.M.Canali,G.Strini. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 70:18(2004), pp. 184426.184426-1-184426.184426-9.

Landau-Zener quantum tunneling in disordered nanomagnets

G.Strini
Ultimo
2004

Abstract

We study Landau-Zener macroscopic quantum transitions in ferromagnetic metal nanoparticles containing on the order of 100 atoms. The model that we consider is described by an effective giant-spin Hamiltonian, with a coupling to a random transverse magnetic field mimicking the effect of quasiparticle excitations and structural disorder on the gap structure of the spin collective modes. We find different types of time evolutions depending on the interplay between the disorder in the transverse field and the initial conditions of the system. In the absence of disorder, if the system starts from a low-energy state, there is one main coherent quantum tunneling event where the initial-state amplitude is completely depleted in favor of a few discrete states, with nearby spin quantum numbers; when starting from the highest excited state, we observe complete inversion of the magnetization through a peculiar "backward cascade evolution." In the random case, the disorder-averaged transition probability for a low-energy initial state becomes a smooth distribution, which is nevertheless still sharply peaked around one of the transitions present in the disorder-free case. On the other hand, the coherent backward cascade phenomenon turns into a damped cascade with frustrated magnetic inversion.
English
excited states; ferromagnetic materials; frustration; magnetic particles; magnetic tunnelling; magnetisation reversal; nanoparticles; quasiparticles; spin Hamiltonians
Settore FIS/01 - Fisica Sperimentale
Articolo
Sì, ma tipo non specificato
2004
APS through AIP
70
18
184426
184426-1
184426-9
Periodico con rilevanza internazionale
info:eu-repo/semantics/article
Landau-Zener quantum tunneling in disordered nanomagnets / V.G.Benza,C.M.Canali,G.Strini. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 70:18(2004), pp. 184426.184426-1-184426.184426-9.
none
Prodotti della ricerca::01 - Articolo su periodico
3
262
Article (author)
si
V.G.Benza,C.M.Canali,G.Strini
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/16699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact