In plants, the iron storage protein ferritin can be targeted to both chloroplasts and mitochondria. To investigate the role of Arabidopsis ATFER4 ferritin in mitochondrial iron trafficking, atfer4-1 and atfer4-2 mutant knock-outs for the AtFer4 gene were grown in heterotrophic suspension cultures. Both mutants showed altered cell size and morphology, reduced viability, higher H2O2 content and reduced O-2 consumption rates when compared to wt. Although no reduction in total ferritin or in mitochondrial ferritin was observed in atfer4 mutants, total iron content increased in atfer4 cells and in atfer4 mitochondria. Transcript correlation analysis highlighted a partial inverse relationship between the transcript levels of the mitochondrial ferric reductase oxidase FRO3, putatively involved in mitochondrial iron import/export, and AtFer4. Consistent with this, FRO3 transcript levels were higher in atfer4 cells. We propose that the complex molecular network maintaining Fe cellular homeostasis requires, in Arabidopsis heterotrophic cells, a proper balance of the different ferritin isoforms, and that alteration of this equilibrium, such as that occurring in atfer4 mutants, is responsible for an altered Fe homeostasis resulting in a change of intraorganellar Fe trafficking.

AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cells / D. Tarantino, N. Santo, P. Morandini, F. Casagrande, H.P. Braun, J. Heinemeyer, G. Vigani, C. Soave, I. Murgia. - In: JOURNAL OF PLANT PHYSIOLOGY. - ISSN 0176-1617. - 167:18(2010), pp. 1598-1605. [10.1016/j.jplph.2010.06.020]

AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cells

D. Tarantino
Primo
;
N. Santo
Secondo
;
P. Morandini;F. Casagrande;G. Vigani;C. Soave
Penultimo
;
I. Murgia
Ultimo
2010

Abstract

In plants, the iron storage protein ferritin can be targeted to both chloroplasts and mitochondria. To investigate the role of Arabidopsis ATFER4 ferritin in mitochondrial iron trafficking, atfer4-1 and atfer4-2 mutant knock-outs for the AtFer4 gene were grown in heterotrophic suspension cultures. Both mutants showed altered cell size and morphology, reduced viability, higher H2O2 content and reduced O-2 consumption rates when compared to wt. Although no reduction in total ferritin or in mitochondrial ferritin was observed in atfer4 mutants, total iron content increased in atfer4 cells and in atfer4 mitochondria. Transcript correlation analysis highlighted a partial inverse relationship between the transcript levels of the mitochondrial ferric reductase oxidase FRO3, putatively involved in mitochondrial iron import/export, and AtFer4. Consistent with this, FRO3 transcript levels were higher in atfer4 cells. We propose that the complex molecular network maintaining Fe cellular homeostasis requires, in Arabidopsis heterotrophic cells, a proper balance of the different ferritin isoforms, and that alteration of this equilibrium, such as that occurring in atfer4 mutants, is responsible for an altered Fe homeostasis resulting in a change of intraorganellar Fe trafficking.
Arabidopsis ; Cell death ; Ferritin ; Iron ; Mitochondria
Settore BIO/04 - Fisiologia Vegetale
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/156294
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 25
social impact