We perform a Monte Carlo simulation of two-dimensional N-step interacting self-avoiding walks at the theta point, with lengths up to N=3200. We compute the critical exponents, verifying the Coulomb-gas predictions, the theta-point temperature T_theta = 1.4986(11), and several invariant size ratios. Then, we focus on the geometrical features of the walks, computing the instantaneous shape ratios, the average asphericity, and the end-to-end distribution function. For the latter quantity, we verify in detail the theoretical predictions for its small- and large-distance behavior.
Geometrical properties of two-dimensional interacting self-avoiding walks at the theta-point / S. Caracciolo, M. Gherardi, M. Papinutto, A. Pelissetto. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 44:11(2011), pp. 115004.115004.1-115004.115004.17.
Titolo: | Geometrical properties of two-dimensional interacting self-avoiding walks at the theta-point |
Autori: | CARACCIOLO, SERGIO (Primo) GHERARDI, MARCO (Secondo) |
Parole Chiave: | Random walks and Levy flights ; distribution theory and Monte Carlo studies ; critical point phenomena ; dynamics of random walks, random surfaces, lattice animals ; numerical methods (Monte Carlo, series resummation) ; dynamic critical phenomena |
Settore Scientifico Disciplinare: | Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici |
Data di pubblicazione: | 2011 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1088/1751-8113/44/11/115004 |
Appare nelle tipologie: | 01 - Articolo su periodico |