During the 2005-2007 June-September ablation seasons, meteorological conditions were recorded on the lower and upper parts of the debris-covered ablation zone of Miage Glacier, Italy. In 2005, debris temperature and subdebris ice melt were also monitored at 25 points with debris thickness of 0.04-0.55 m, spread over 5 km(2) of the glacier. The radiative fluxes were directly measured, and near-closure of the surface energy balance is achieved, providing support for the bulk aerodynamic calculation of the turbulent fluxes. Surface-layer meteorology and energy fluxes are dominated by the pattern of incoming solar radiation which heats the debris, driving strong convection. Mean measured subdebris ice melt rates are 6-33 mm d(-1), and mean debris thermal conductivity is 0.96 W m(-1) K-1, displaying a weak positive relationship with debris thickness. Mean seasonal values of the net shortwave, net longwave, and debris heat fluxes show little variation between years, despite contrasting meteorological conditions, while the turbulent latent (evaporative) heat flux was more than twice as large in the wet summer of 2007 compared with 2005. The increase in energy output from the debris surface in response to increasing surface temperature means that subdebris ice melt rates are fairly insensitive to atmospheric temperature variations in contrast to debris-free glaciers. Improved knowledge of spatial patterns of debris thickness distribution and 2 m air temperature, and the controls on evaporation of rainwater from the surface, are needed for distributed physically based melt modeling of debris-covered glaciers.

Meteorology and surface energy fluxes in the 2005-2007 ablation seasons at Miage Debris-covered Glacier, Mont Blanc Massif, Italian Alps / B.W. Brock, C.E. Mihalcea, M. Kirkbride, G.A. Diolaiuti, M.E.J. Cutler, C. Smiraglia. - In: JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS. - ISSN 0148-0227. - 115:9(2010 May 07), pp. D09106-1-D09106-16.

Meteorology and surface energy fluxes in the 2005-2007 ablation seasons at Miage Debris-covered Glacier, Mont Blanc Massif, Italian Alps

C.E. Mihalcea;G.A. Diolaiuti;C. Smiraglia
2010-05-07

Abstract

During the 2005-2007 June-September ablation seasons, meteorological conditions were recorded on the lower and upper parts of the debris-covered ablation zone of Miage Glacier, Italy. In 2005, debris temperature and subdebris ice melt were also monitored at 25 points with debris thickness of 0.04-0.55 m, spread over 5 km(2) of the glacier. The radiative fluxes were directly measured, and near-closure of the surface energy balance is achieved, providing support for the bulk aerodynamic calculation of the turbulent fluxes. Surface-layer meteorology and energy fluxes are dominated by the pattern of incoming solar radiation which heats the debris, driving strong convection. Mean measured subdebris ice melt rates are 6-33 mm d(-1), and mean debris thermal conductivity is 0.96 W m(-1) K-1, displaying a weak positive relationship with debris thickness. Mean seasonal values of the net shortwave, net longwave, and debris heat fluxes show little variation between years, despite contrasting meteorological conditions, while the turbulent latent (evaporative) heat flux was more than twice as large in the wet summer of 2007 compared with 2005. The increase in energy output from the debris surface in response to increasing surface temperature means that subdebris ice melt rates are fairly insensitive to atmospheric temperature variations in contrast to debris-free glaciers. Improved knowledge of spatial patterns of debris thickness distribution and 2 m air temperature, and the controls on evaporation of rainwater from the surface, are needed for distributed physically based melt modeling of debris-covered glaciers.
Settore GEO/04 - Geografia Fisica e Geomorfologia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/152443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 124
  • ???jsp.display-item.citation.isi??? 121
social impact