This paper presents a vector space model approach to representing documents and queries, which considers concepts instead of terms and uses WordNet as a light ontology. This representation reduces information redundancy with respect to conventional semantic expansion techniques. Experiments carried out on the MuchMore benchmark and on the TREC-7 and TREC-8 Ad-hoc collections demonstrate the effectiveness of the proposed approach.

Ontology-based document and query representation may improve the effectiveness of information retrieval / M. Dragoni, C. da Costa Pereira, A.G.B. Tettamanzi - In: STAIRS 2010 : proceedings of the fifth starting AI researchers' symposium / [a cura di] T. Agotnes. - Amsterdam : IOS press, 2010. - ISBN 9781607506751. - pp. 89-100 (( Intervento presentato al 5. convegno Starting AI Researchers' Symposium (STAIRS) tenutosi a Lisbon, Portugal nel 2010.

Ontology-based document and query representation may improve the effectiveness of information retrieval

M. Dragoni
Primo
;
C. da Costa Pereira
Secondo
;
A.G.B. Tettamanzi
Ultimo
2010

Abstract

This paper presents a vector space model approach to representing documents and queries, which considers concepts instead of terms and uses WordNet as a light ontology. This representation reduces information redundancy with respect to conventional semantic expansion techniques. Experiments carried out on the MuchMore benchmark and on the TREC-7 and TREC-8 Ad-hoc collections demonstrate the effectiveness of the proposed approach.
Settore INF/01 - Informatica
2010
ECCAI
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/152406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact